Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anibar | Unicode version |
Description: Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008.) |
Ref | Expression |
---|---|
3anibar.1 |
Ref | Expression |
---|---|
3anibar |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anibar.1 | . 2 | |
2 | simp3 984 | . . 3 | |
3 | 2 | biantrurd 303 | . 2 |
4 | 1, 3 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: frecsuclem 6355 shftfibg 10731 neiint 12615 |
Copyright terms: Public domain | W3C validator |