ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfibg Unicode version

Theorem shftfibg 11331
Description: Value of a fiber of the relation  F. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
shftfibg  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  A )
" { B }
)  =  ( F
" { ( B  -  A ) } ) )

Proof of Theorem shftfibg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1022 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 simp1 1021 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  F  e.  V )
3 simp3 1023 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
4 shftfvalg 11329 . . . . . . 7  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
54breqd 4094 . . . . . 6  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( B ( F 
shift  A ) z  <->  B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z ) )
6 vex 2802 . . . . . . 7  |-  z  e. 
_V
7 eleq1 2292 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  CC  <->  B  e.  CC ) )
8 oveq1 6008 . . . . . . . . . 10  |-  ( x  =  B  ->  (
x  -  A )  =  ( B  -  A ) )
98breq1d 4093 . . . . . . . . 9  |-  ( x  =  B  ->  (
( x  -  A
) F y  <->  ( B  -  A ) F y ) )
107, 9anbi12d 473 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F y ) ) )
11 breq2 4087 . . . . . . . . 9  |-  ( y  =  z  ->  (
( B  -  A
) F y  <->  ( B  -  A ) F z ) )
1211anbi2d 464 . . . . . . . 8  |-  ( y  =  z  ->  (
( B  e.  CC  /\  ( B  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
13 eqid 2229 . . . . . . . 8  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
1410, 12, 13brabg 4357 . . . . . . 7  |-  ( ( B  e.  CC  /\  z  e.  _V )  ->  ( B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
156, 14mpan2 425 . . . . . 6  |-  ( B  e.  CC  ->  ( B { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
165, 15sylan9bb 462 . . . . 5  |-  ( ( ( A  e.  CC  /\  F  e.  V )  /\  B  e.  CC )  ->  ( B ( F  shift  A )
z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
171, 2, 3, 16syl21anc 1270 . . . 4  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( B ( F  shift  A ) z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
18173anibar 1189 . . 3  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( B ( F  shift  A ) z  <->  ( B  -  A ) F z ) )
1918abbidv 2347 . 2  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  { z  |  B ( F 
shift  A ) z }  =  { z  |  ( B  -  A
) F z } )
20 imasng 5093 . . 3  |-  ( B  e.  CC  ->  (
( F  shift  A )
" { B }
)  =  { z  |  B ( F 
shift  A ) z } )
21203ad2ant3 1044 . 2  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  A )
" { B }
)  =  { z  |  B ( F 
shift  A ) z } )
223, 1subcld 8457 . . 3  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A )  e.  CC )
23 imasng 5093 . . 3  |-  ( ( B  -  A )  e.  CC  ->  ( F " { ( B  -  A ) } )  =  { z  |  ( B  -  A ) F z } )
2422, 23syl 14 . 2  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( F " { ( B  -  A ) } )  =  { z  |  ( B  -  A ) F z } )
2519, 21, 243eqtr4d 2272 1  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  A )
" { B }
)  =  ( F
" { ( B  -  A ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799   {csn 3666   class class class wbr 4083   {copab 4144   "cima 4722  (class class class)co 6001   CCcc 7997    - cmin 8317    shift cshi 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-shft 11326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator