ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfibg Unicode version

Theorem shftfibg 10702
Description: Value of a fiber of the relation  F. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
shftfibg  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  A )
" { B }
)  =  ( F
" { ( B  -  A ) } ) )

Proof of Theorem shftfibg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 983 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 simp1 982 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  F  e.  V )
3 simp3 984 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
4 shftfvalg 10700 . . . . . . 7  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
54breqd 3976 . . . . . 6  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( B ( F 
shift  A ) z  <->  B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z ) )
6 vex 2715 . . . . . . 7  |-  z  e. 
_V
7 eleq1 2220 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  CC  <->  B  e.  CC ) )
8 oveq1 5825 . . . . . . . . . 10  |-  ( x  =  B  ->  (
x  -  A )  =  ( B  -  A ) )
98breq1d 3975 . . . . . . . . 9  |-  ( x  =  B  ->  (
( x  -  A
) F y  <->  ( B  -  A ) F y ) )
107, 9anbi12d 465 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F y ) ) )
11 breq2 3969 . . . . . . . . 9  |-  ( y  =  z  ->  (
( B  -  A
) F y  <->  ( B  -  A ) F z ) )
1211anbi2d 460 . . . . . . . 8  |-  ( y  =  z  ->  (
( B  e.  CC  /\  ( B  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
13 eqid 2157 . . . . . . . 8  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
1410, 12, 13brabg 4228 . . . . . . 7  |-  ( ( B  e.  CC  /\  z  e.  _V )  ->  ( B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
156, 14mpan2 422 . . . . . 6  |-  ( B  e.  CC  ->  ( B { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
165, 15sylan9bb 458 . . . . 5  |-  ( ( ( A  e.  CC  /\  F  e.  V )  /\  B  e.  CC )  ->  ( B ( F  shift  A )
z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
171, 2, 3, 16syl21anc 1219 . . . 4  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( B ( F  shift  A ) z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
18173anibar 1150 . . 3  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( B ( F  shift  A ) z  <->  ( B  -  A ) F z ) )
1918abbidv 2275 . 2  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  { z  |  B ( F 
shift  A ) z }  =  { z  |  ( B  -  A
) F z } )
20 imasng 4948 . . 3  |-  ( B  e.  CC  ->  (
( F  shift  A )
" { B }
)  =  { z  |  B ( F 
shift  A ) z } )
21203ad2ant3 1005 . 2  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  A )
" { B }
)  =  { z  |  B ( F 
shift  A ) z } )
223, 1subcld 8169 . . 3  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A )  e.  CC )
23 imasng 4948 . . 3  |-  ( ( B  -  A )  e.  CC  ->  ( F " { ( B  -  A ) } )  =  { z  |  ( B  -  A ) F z } )
2422, 23syl 14 . 2  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( F " { ( B  -  A ) } )  =  { z  |  ( B  -  A ) F z } )
2519, 21, 243eqtr4d 2200 1  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  A )
" { B }
)  =  ( F
" { ( B  -  A ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   {cab 2143   _Vcvv 2712   {csn 3560   class class class wbr 3965   {copab 4024   "cima 4586  (class class class)co 5818   CCcc 7713    - cmin 8029    shift cshi 10696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-resscn 7807  ax-1cn 7808  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-sub 8031  df-shft 10697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator