Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftfibg | Unicode version |
Description: Value of a fiber of the relation . (Contributed by Jim Kingdon, 15-Aug-2021.) |
Ref | Expression |
---|---|
shftfibg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 983 | . . . . 5 | |
2 | simp1 982 | . . . . 5 | |
3 | simp3 984 | . . . . 5 | |
4 | shftfvalg 10700 | . . . . . . 7 | |
5 | 4 | breqd 3976 | . . . . . 6 |
6 | vex 2715 | . . . . . . 7 | |
7 | eleq1 2220 | . . . . . . . . 9 | |
8 | oveq1 5825 | . . . . . . . . . 10 | |
9 | 8 | breq1d 3975 | . . . . . . . . 9 |
10 | 7, 9 | anbi12d 465 | . . . . . . . 8 |
11 | breq2 3969 | . . . . . . . . 9 | |
12 | 11 | anbi2d 460 | . . . . . . . 8 |
13 | eqid 2157 | . . . . . . . 8 | |
14 | 10, 12, 13 | brabg 4228 | . . . . . . 7 |
15 | 6, 14 | mpan2 422 | . . . . . 6 |
16 | 5, 15 | sylan9bb 458 | . . . . 5 |
17 | 1, 2, 3, 16 | syl21anc 1219 | . . . 4 |
18 | 17 | 3anibar 1150 | . . 3 |
19 | 18 | abbidv 2275 | . 2 |
20 | imasng 4948 | . . 3 | |
21 | 20 | 3ad2ant3 1005 | . 2 |
22 | 3, 1 | subcld 8169 | . . 3 |
23 | imasng 4948 | . . 3 | |
24 | 22, 23 | syl 14 | . 2 |
25 | 19, 21, 24 | 3eqtr4d 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 cab 2143 cvv 2712 csn 3560 class class class wbr 3965 copab 4024 cima 4586 (class class class)co 5818 cc 7713 cmin 8029 cshi 10696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 df-shft 10697 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |