| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrurd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1167 drex1 1812 elrab3t 2919 bnd2 4207 opbrop 4743 opelresi 4958 funcnv3 5321 fnssresb 5373 dff1o5 5516 fneqeql2 5674 fnniniseg2 5688 rexsupp 5689 dffo3 5712 fmptco 5731 fnressn 5751 fconst4m 5785 riota2df 5901 eloprabga 6013 frecabcl 6466 mptelixpg 6802 exmidfodomrlemreseldju 7279 enq0breq 7520 genpassl 7608 genpassu 7609 elnnnn0 9309 peano2z 9379 znnsub 9394 znn0sub 9408 uzin 9651 nn01to3 9708 rpnegap 9778 negelrp 9779 xsubge0 9973 divelunit 10094 elfz5 10109 uzsplit 10184 elfzonelfzo 10323 infssuzex 10340 adddivflid 10399 divfl0 10403 2shfti 11013 rexuz3 11172 clim2c 11466 fisumss 11574 bitsmod 12138 bitscmp 12140 bezoutlemmain 12190 nninfctlemfo 12232 dvdsfi 12432 pc2dvds 12524 1arith 12561 xpsfrnel 13046 xpsfrnel2 13048 ghmeqker 13477 lsslss 14013 zndvds 14281 znleval2 14286 eltg3 14377 lmbrf 14535 cnrest2 14556 cnptoprest 14559 cnptoprest2 14560 ismet2 14674 elbl2ps 14712 elbl2 14713 xblpnfps 14718 xblpnf 14719 bdxmet 14821 metcn 14834 cnbl0 14854 cnblcld 14855 mulc1cncf 14909 ellimc3apf 14980 pilem1 15099 wilthlem1 15300 lgsdilem 15352 lgsne0 15363 lgsabs1 15364 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |