| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrurd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1168 3biant1d 1367 drex1 1821 elrab3t 2928 bnd2 4218 opbrop 4755 opelresi 4971 funcnv3 5337 fnssresb 5389 dff1o5 5533 fneqeql2 5691 fnniniseg2 5705 rexsupp 5706 dffo3 5729 fmptco 5748 fnressn 5772 fconst4m 5806 riota2df 5922 eloprabga 6034 frecabcl 6487 mptelixpg 6823 exmidfodomrlemreseldju 7310 enq0breq 7551 genpassl 7639 genpassu 7640 elnnnn0 9340 peano2z 9410 znnsub 9426 znn0sub 9440 uzin 9683 nn01to3 9740 rpnegap 9810 negelrp 9811 xsubge0 10005 divelunit 10126 elfz5 10141 uzsplit 10216 elfzonelfzo 10361 infssuzex 10378 adddivflid 10437 divfl0 10441 swrdspsleq 11123 2shfti 11175 rexuz3 11334 clim2c 11628 fisumss 11736 bitsmod 12300 bitscmp 12302 bezoutlemmain 12352 nninfctlemfo 12394 dvdsfi 12594 pc2dvds 12686 1arith 12723 xpsfrnel 13209 xpsfrnel2 13211 ghmeqker 13640 lsslss 14176 zndvds 14444 znleval2 14449 eltg3 14562 lmbrf 14720 cnrest2 14741 cnptoprest 14744 cnptoprest2 14745 ismet2 14859 elbl2ps 14897 elbl2 14898 xblpnfps 14903 xblpnf 14904 bdxmet 15006 metcn 15019 cnbl0 15039 cnblcld 15040 mulc1cncf 15094 ellimc3apf 15165 pilem1 15284 wilthlem1 15485 lgsdilem 15537 lgsne0 15548 lgsabs1 15549 lgsquadlem1 15587 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |