| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrurd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1168 3biant1d 1367 drex1 1821 elrab3t 2928 bnd2 4217 opbrop 4754 opelresi 4970 funcnv3 5336 fnssresb 5388 dff1o5 5531 fneqeql2 5689 fnniniseg2 5703 rexsupp 5704 dffo3 5727 fmptco 5746 fnressn 5770 fconst4m 5804 riota2df 5920 eloprabga 6032 frecabcl 6485 mptelixpg 6821 exmidfodomrlemreseldju 7308 enq0breq 7549 genpassl 7637 genpassu 7638 elnnnn0 9338 peano2z 9408 znnsub 9424 znn0sub 9438 uzin 9681 nn01to3 9738 rpnegap 9808 negelrp 9809 xsubge0 10003 divelunit 10124 elfz5 10139 uzsplit 10214 elfzonelfzo 10359 infssuzex 10376 adddivflid 10435 divfl0 10439 swrdspsleq 11120 2shfti 11142 rexuz3 11301 clim2c 11595 fisumss 11703 bitsmod 12267 bitscmp 12269 bezoutlemmain 12319 nninfctlemfo 12361 dvdsfi 12561 pc2dvds 12653 1arith 12690 xpsfrnel 13176 xpsfrnel2 13178 ghmeqker 13607 lsslss 14143 zndvds 14411 znleval2 14416 eltg3 14529 lmbrf 14687 cnrest2 14708 cnptoprest 14711 cnptoprest2 14712 ismet2 14826 elbl2ps 14864 elbl2 14865 xblpnfps 14870 xblpnf 14871 bdxmet 14973 metcn 14986 cnbl0 15006 cnblcld 15007 mulc1cncf 15061 ellimc3apf 15132 pilem1 15251 wilthlem1 15452 lgsdilem 15504 lgsne0 15515 lgsabs1 15516 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |