| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrurd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1168 3biant1d 1367 drex1 1822 elrab3t 2935 bnd2 4233 opbrop 4772 opelresi 4989 funcnv3 5355 fnssresb 5407 dff1o5 5553 fneqeql2 5712 fnniniseg2 5726 rexsupp 5727 dffo3 5750 fmptco 5769 fnressn 5793 fconst4m 5827 riota2df 5943 eloprabga 6055 frecabcl 6508 mptelixpg 6844 exmidfodomrlemreseldju 7339 enq0breq 7584 genpassl 7672 genpassu 7673 elnnnn0 9373 peano2z 9443 znnsub 9459 znn0sub 9473 uzin 9716 nn01to3 9773 rpnegap 9843 negelrp 9844 xsubge0 10038 divelunit 10159 elfz5 10174 uzsplit 10249 elfzonelfzo 10396 infssuzex 10413 adddivflid 10472 divfl0 10476 swrdspsleq 11158 2shfti 11257 rexuz3 11416 clim2c 11710 fisumss 11818 bitsmod 12382 bitscmp 12384 bezoutlemmain 12434 nninfctlemfo 12476 dvdsfi 12676 pc2dvds 12768 1arith 12805 xpsfrnel 13291 xpsfrnel2 13293 ghmeqker 13722 lsslss 14258 zndvds 14526 znleval2 14531 eltg3 14644 lmbrf 14802 cnrest2 14823 cnptoprest 14826 cnptoprest2 14827 ismet2 14941 elbl2ps 14979 elbl2 14980 xblpnfps 14985 xblpnf 14986 bdxmet 15088 metcn 15101 cnbl0 15121 cnblcld 15122 mulc1cncf 15176 ellimc3apf 15247 pilem1 15366 wilthlem1 15567 lgsdilem 15619 lgsne0 15630 lgsabs1 15631 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |