![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biantrurd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ibar 301 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbirand 441 3anibar 1167 drex1 1809 elrab3t 2915 bnd2 4202 opbrop 4738 opelresi 4953 funcnv3 5316 fnssresb 5366 dff1o5 5509 fneqeql2 5667 fnniniseg2 5681 rexsupp 5682 dffo3 5705 fmptco 5724 fnressn 5744 fconst4m 5778 riota2df 5894 eloprabga 6005 frecabcl 6452 mptelixpg 6788 exmidfodomrlemreseldju 7260 enq0breq 7496 genpassl 7584 genpassu 7585 elnnnn0 9283 peano2z 9353 znnsub 9368 znn0sub 9382 uzin 9625 nn01to3 9682 rpnegap 9752 negelrp 9753 xsubge0 9947 divelunit 10068 elfz5 10083 uzsplit 10158 elfzonelfzo 10297 adddivflid 10361 divfl0 10365 2shfti 10975 rexuz3 11134 clim2c 11427 fisumss 11535 infssuzex 12086 bezoutlemmain 12135 nninfctlemfo 12177 pc2dvds 12468 1arith 12505 xpsfrnel 12927 xpsfrnel2 12929 ghmeqker 13341 lsslss 13877 zndvds 14137 znleval2 14142 eltg3 14225 lmbrf 14383 cnrest2 14404 cnptoprest 14407 cnptoprest2 14408 ismet2 14522 elbl2ps 14560 elbl2 14561 xblpnfps 14566 xblpnf 14567 bdxmet 14669 metcn 14682 cnbl0 14702 cnblcld 14703 mulc1cncf 14744 ellimc3apf 14814 pilem1 14914 wilthlem1 15112 lgsdilem 15143 lgsne0 15154 lgsabs1 15155 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |