| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrurd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1189 3biant1d 1389 drex1 1844 elrab3t 2958 bnd2 4257 opbrop 4798 opelresi 5016 funcnv3 5383 fnssresb 5435 dff1o5 5581 fneqeql2 5744 fnniniseg2 5758 rexsupp 5759 dffo3 5782 fmptco 5801 fnressn 5825 fconst4m 5859 riota2df 5976 eloprabga 6091 frecabcl 6545 mptelixpg 6881 exmidfodomrlemreseldju 7378 enq0breq 7623 genpassl 7711 genpassu 7712 elnnnn0 9412 peano2z 9482 znnsub 9498 znn0sub 9512 uzin 9755 nn01to3 9812 rpnegap 9882 negelrp 9883 xsubge0 10077 divelunit 10198 elfz5 10213 uzsplit 10288 elfzonelfzo 10436 infssuzex 10453 adddivflid 10512 divfl0 10516 swrdspsleq 11199 2shfti 11342 rexuz3 11501 clim2c 11795 fisumss 11903 bitsmod 12467 bitscmp 12469 bezoutlemmain 12519 nninfctlemfo 12561 dvdsfi 12761 pc2dvds 12853 1arith 12890 xpsfrnel 13377 xpsfrnel2 13379 ghmeqker 13808 lsslss 14345 zndvds 14613 znleval2 14618 eltg3 14731 lmbrf 14889 cnrest2 14910 cnptoprest 14913 cnptoprest2 14914 ismet2 15028 elbl2ps 15066 elbl2 15067 xblpnfps 15072 xblpnf 15073 bdxmet 15175 metcn 15188 cnbl0 15208 cnblcld 15209 mulc1cncf 15263 ellimc3apf 15334 pilem1 15453 wilthlem1 15654 lgsdilem 15706 lgsne0 15717 lgsabs1 15718 lgsquadlem1 15756 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |