![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biantrurd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ibar 301 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbirand 441 3anibar 1165 drex1 1798 elrab3t 2892 bnd2 4173 opbrop 4705 opelresi 4918 funcnv3 5278 fnssresb 5328 dff1o5 5470 fneqeql2 5625 fnniniseg2 5639 rexsupp 5640 dffo3 5663 fmptco 5682 fnressn 5702 fconst4m 5736 riota2df 5850 eloprabga 5961 frecabcl 6399 mptelixpg 6733 exmidfodomrlemreseldju 7198 enq0breq 7434 genpassl 7522 genpassu 7523 elnnnn0 9218 peano2z 9288 znnsub 9303 znn0sub 9317 uzin 9559 nn01to3 9616 rpnegap 9685 negelrp 9686 xsubge0 9880 divelunit 10001 elfz5 10016 uzsplit 10091 elfzonelfzo 10229 adddivflid 10291 divfl0 10295 2shfti 10839 rexuz3 10998 clim2c 11291 fisumss 11399 infssuzex 11949 bezoutlemmain 11998 pc2dvds 12328 1arith 12364 xpsfrnel 12762 xpsfrnel2 12764 eltg3 13527 lmbrf 13685 cnrest2 13706 cnptoprest 13709 cnptoprest2 13710 ismet2 13824 elbl2ps 13862 elbl2 13863 xblpnfps 13868 xblpnf 13869 bdxmet 13971 metcn 13984 cnbl0 14004 cnblcld 14005 mulc1cncf 14046 ellimc3apf 14099 pilem1 14170 lgsdilem 14398 lgsne0 14409 lgsabs1 14410 |
Copyright terms: Public domain | W3C validator |