ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiint Unicode version

Theorem neiint 12785
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neiint  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )

Proof of Theorem neiint
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21isnei 12784 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
323adant3 1007 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
433anibar 1155 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
5 simprrl 529 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  v )
61ssntr 12762 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
763adantl2 1144 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
87adantrrl 478 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  v  C_  ( ( int `  J
) `  N )
)
95, 8sstrd 3152 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  ( ( int `  J
) `  N )
)
109rexlimdvaa 2584 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  ->  S  C_  ( ( int `  J ) `  N
) ) )
11 simpl1 990 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  J  e.  Top )
12 simpl3 992 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  N  C_  X )
131ntropn 12757 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  e.  J )
1411, 12, 13syl2anc 409 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  e.  J )
15 simpr 109 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  S  C_  ( ( int `  J
) `  N )
)
161ntrss2 12761 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  C_  N )
1711, 12, 16syl2anc 409 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  C_  N )
18 sseq2 3166 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( S  C_  v  <->  S  C_  ( ( int `  J ) `
 N ) ) )
19 sseq1 3165 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( v  C_  N  <->  ( ( int `  J ) `  N
)  C_  N )
)
2018, 19anbi12d 465 . . . . . 6  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( ( S  C_  v  /\  v  C_  N )  <->  ( S  C_  ( ( int `  J
) `  N )  /\  ( ( int `  J
) `  N )  C_  N ) ) )
2120rspcev 2830 . . . . 5  |-  ( ( ( ( int `  J
) `  N )  e.  J  /\  ( S  C_  ( ( int `  J ) `  N
)  /\  ( ( int `  J ) `  N )  C_  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2214, 15, 17, 21syl12anc 1226 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2322ex 114 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( S  C_  ( ( int `  J ) `  N
)  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
2410, 23impbid 128 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  <->  S  C_  (
( int `  J
) `  N )
) )
254, 24bitrd 187 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   U.cuni 3789   ` cfv 5188   Topctop 12635   intcnt 12733   neicnei 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-ntr 12736  df-nei 12779
This theorem is referenced by:  topssnei  12802  iscnp4  12858
  Copyright terms: Public domain W3C validator