Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neiint | Unicode version |
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
neifval.1 |
Ref | Expression |
---|---|
neiint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neifval.1 | . . . . 5 | |
2 | 1 | isnei 13224 | . . . 4 |
3 | 2 | 3adant3 1017 | . . 3 |
4 | 3 | 3anibar 1165 | . 2 |
5 | simprrl 539 | . . . . 5 | |
6 | 1 | ssntr 13202 | . . . . . . 7 |
7 | 6 | 3adantl2 1154 | . . . . . 6 |
8 | 7 | adantrrl 486 | . . . . 5 |
9 | 5, 8 | sstrd 3163 | . . . 4 |
10 | 9 | rexlimdvaa 2593 | . . 3 |
11 | simpl1 1000 | . . . . . 6 | |
12 | simpl3 1002 | . . . . . 6 | |
13 | 1 | ntropn 13197 | . . . . . 6 |
14 | 11, 12, 13 | syl2anc 411 | . . . . 5 |
15 | simpr 110 | . . . . 5 | |
16 | 1 | ntrss2 13201 | . . . . . 6 |
17 | 11, 12, 16 | syl2anc 411 | . . . . 5 |
18 | sseq2 3177 | . . . . . . 7 | |
19 | sseq1 3176 | . . . . . . 7 | |
20 | 18, 19 | anbi12d 473 | . . . . . 6 |
21 | 20 | rspcev 2839 | . . . . 5 |
22 | 14, 15, 17, 21 | syl12anc 1236 | . . . 4 |
23 | 22 | ex 115 | . . 3 |
24 | 10, 23 | impbid 129 | . 2 |
25 | 4, 24 | bitrd 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wrex 2454 wss 3127 cuni 3805 cfv 5208 ctop 13075 cnt 13173 cnei 13218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-top 13076 df-ntr 13176 df-nei 13219 |
This theorem is referenced by: topssnei 13242 iscnp4 13298 |
Copyright terms: Public domain | W3C validator |