ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiint Unicode version

Theorem neiint 14692
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neiint  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )

Proof of Theorem neiint
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21isnei 14691 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
323adant3 1020 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
433anibar 1168 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
5 simprrl 539 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  v )
61ssntr 14669 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
763adantl2 1157 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
87adantrrl 486 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  v  C_  ( ( int `  J
) `  N )
)
95, 8sstrd 3207 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  ( ( int `  J
) `  N )
)
109rexlimdvaa 2625 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  ->  S  C_  ( ( int `  J ) `  N
) ) )
11 simpl1 1003 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  J  e.  Top )
12 simpl3 1005 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  N  C_  X )
131ntropn 14664 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  e.  J )
1411, 12, 13syl2anc 411 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  e.  J )
15 simpr 110 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  S  C_  ( ( int `  J
) `  N )
)
161ntrss2 14668 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  C_  N )
1711, 12, 16syl2anc 411 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  C_  N )
18 sseq2 3221 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( S  C_  v  <->  S  C_  ( ( int `  J ) `
 N ) ) )
19 sseq1 3220 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( v  C_  N  <->  ( ( int `  J ) `  N
)  C_  N )
)
2018, 19anbi12d 473 . . . . . 6  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( ( S  C_  v  /\  v  C_  N )  <->  ( S  C_  ( ( int `  J
) `  N )  /\  ( ( int `  J
) `  N )  C_  N ) ) )
2120rspcev 2881 . . . . 5  |-  ( ( ( ( int `  J
) `  N )  e.  J  /\  ( S  C_  ( ( int `  J ) `  N
)  /\  ( ( int `  J ) `  N )  C_  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2214, 15, 17, 21syl12anc 1248 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2322ex 115 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( S  C_  ( ( int `  J ) `  N
)  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
2410, 23impbid 129 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  <->  S  C_  (
( int `  J
) `  N )
) )
254, 24bitrd 188 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486    C_ wss 3170   U.cuni 3856   ` cfv 5280   Topctop 14544   intcnt 14640   neicnei 14685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-top 14545  df-ntr 14643  df-nei 14686
This theorem is referenced by:  topssnei  14709  iscnp4  14765
  Copyright terms: Public domain W3C validator