| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neiint | Unicode version | ||
| Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| neifval.1 |
|
| Ref | Expression |
|---|---|
| neiint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 |
. . . . 5
| |
| 2 | 1 | isnei 14534 |
. . . 4
|
| 3 | 2 | 3adant3 1019 |
. . 3
|
| 4 | 3 | 3anibar 1167 |
. 2
|
| 5 | simprrl 539 |
. . . . 5
| |
| 6 | 1 | ssntr 14512 |
. . . . . . 7
|
| 7 | 6 | 3adantl2 1156 |
. . . . . 6
|
| 8 | 7 | adantrrl 486 |
. . . . 5
|
| 9 | 5, 8 | sstrd 3202 |
. . . 4
|
| 10 | 9 | rexlimdvaa 2623 |
. . 3
|
| 11 | simpl1 1002 |
. . . . . 6
| |
| 12 | simpl3 1004 |
. . . . . 6
| |
| 13 | 1 | ntropn 14507 |
. . . . . 6
|
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | simpr 110 |
. . . . 5
| |
| 16 | 1 | ntrss2 14511 |
. . . . . 6
|
| 17 | 11, 12, 16 | syl2anc 411 |
. . . . 5
|
| 18 | sseq2 3216 |
. . . . . . 7
| |
| 19 | sseq1 3215 |
. . . . . . 7
| |
| 20 | 18, 19 | anbi12d 473 |
. . . . . 6
|
| 21 | 20 | rspcev 2876 |
. . . . 5
|
| 22 | 14, 15, 17, 21 | syl12anc 1247 |
. . . 4
|
| 23 | 22 | ex 115 |
. . 3
|
| 24 | 10, 23 | impbid 129 |
. 2
|
| 25 | 4, 24 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-top 14388 df-ntr 14486 df-nei 14529 |
| This theorem is referenced by: topssnei 14552 iscnp4 14608 |
| Copyright terms: Public domain | W3C validator |