| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neiint | Unicode version | ||
| Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| neifval.1 |
|
| Ref | Expression |
|---|---|
| neiint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 |
. . . . 5
| |
| 2 | 1 | isnei 14691 |
. . . 4
|
| 3 | 2 | 3adant3 1020 |
. . 3
|
| 4 | 3 | 3anibar 1168 |
. 2
|
| 5 | simprrl 539 |
. . . . 5
| |
| 6 | 1 | ssntr 14669 |
. . . . . . 7
|
| 7 | 6 | 3adantl2 1157 |
. . . . . 6
|
| 8 | 7 | adantrrl 486 |
. . . . 5
|
| 9 | 5, 8 | sstrd 3207 |
. . . 4
|
| 10 | 9 | rexlimdvaa 2625 |
. . 3
|
| 11 | simpl1 1003 |
. . . . . 6
| |
| 12 | simpl3 1005 |
. . . . . 6
| |
| 13 | 1 | ntropn 14664 |
. . . . . 6
|
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | simpr 110 |
. . . . 5
| |
| 16 | 1 | ntrss2 14668 |
. . . . . 6
|
| 17 | 11, 12, 16 | syl2anc 411 |
. . . . 5
|
| 18 | sseq2 3221 |
. . . . . . 7
| |
| 19 | sseq1 3220 |
. . . . . . 7
| |
| 20 | 18, 19 | anbi12d 473 |
. . . . . 6
|
| 21 | 20 | rspcev 2881 |
. . . . 5
|
| 22 | 14, 15, 17, 21 | syl12anc 1248 |
. . . 4
|
| 23 | 22 | ex 115 |
. . 3
|
| 24 | 10, 23 | impbid 129 |
. 2
|
| 25 | 4, 24 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-top 14545 df-ntr 14643 df-nei 14686 |
| This theorem is referenced by: topssnei 14709 iscnp4 14765 |
| Copyright terms: Public domain | W3C validator |