Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4d | Unicode version |
Description: Deduction form of bitr4i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4d.1 | |
bitr4d.2 |
Ref | Expression |
---|---|
bitr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4d.1 | . 2 | |
2 | bitr4d.2 | . . 3 | |
3 | 2 | bicomd 140 | . 2 |
4 | 1, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2d 215 3bitr2rd 216 3bitr4d 219 3bitr4rd 220 mpbirand 439 mpbiran2d 440 bianabs 606 imordc 892 3anibar 1160 xor2dc 1385 bilukdc 1391 reuhypd 4456 opelresi 4902 iota1 5174 funbrfv2b 5541 dffn5im 5542 fneqeql 5604 f1ompt 5647 dff13 5747 fliftcnv 5774 isotr 5795 isoini 5797 caovord3 6026 releldm2 6164 tpostpos 6243 nnsssuc 6481 nnaordi 6487 iserd 6539 ecdmn0m 6555 qliftel 6593 qliftfun 6595 qliftf 6598 ecopovsym 6609 mapen 6824 supisolem 6985 cnvti 6996 omp1eomlem 7071 ctssdc 7090 isomnimap 7113 ismkvmap 7130 iswomnimap 7142 recmulnqg 7353 nqtri3or 7358 ltmnqg 7363 mullocprlem 7532 addextpr 7583 gt0srpr 7710 ltsosr 7726 ltasrg 7732 map2psrprg 7767 xrlenlt 7984 letri3 8000 subadd 8122 ltsubadd2 8352 lesubadd2 8354 suble 8359 ltsub23 8361 ltaddpos2 8372 ltsubpos 8373 subge02 8397 ltaddsublt 8490 reapneg 8516 apsym 8525 apti 8541 leltap 8544 ap0gt0 8559 divmulap 8592 divmulap3 8594 rec11rap 8628 ltdiv1 8784 ltdivmul2 8794 ledivmul2 8796 ltrec 8799 suprleubex 8870 nnle1eq1 8902 avgle1 9118 avgle2 9119 nn0le0eq0 9163 znnnlt1 9260 zleltp1 9267 elz2 9283 uzm1 9517 uzin 9519 difrp 9649 xrletri3 9761 xgepnf 9773 xltnegi 9792 xltadd1 9833 xposdif 9839 xleaddadd 9844 elioo5 9890 elfz5 9973 fzdifsuc 10037 elfzm11 10047 uzsplit 10048 elfzonelfzo 10186 qtri3or 10199 qavgle 10215 flqbi 10246 flqbi2 10247 zmodid2 10308 q2submod 10341 sqap0 10542 lt2sq 10549 le2sq 10550 nn0opthlem1d 10654 bcval5 10697 zfz1isolemiso 10774 shftfib 10787 mulreap 10828 caucvgrelemcau 10944 caucvgre 10945 elicc4abs 11058 abs2difabs 11072 cau4 11080 maxclpr 11186 negfi 11191 lemininf 11197 mul0inf 11204 xrlemininf 11234 xrminltinf 11235 clim2 11246 climeq 11262 fisumss 11355 fsumabs 11428 isumshft 11453 absefib 11733 dvdsval3 11753 dvdslelemd 11803 dvdsabseq 11807 dvdsflip 11811 dvdsssfz1 11812 zeo3 11827 ndvdsadd 11890 dvdssq 11986 algcvgblem 12003 lcmdvds 12033 ncoprmgcdgt1b 12044 isprm3 12072 phiprmpw 12176 prmdiv 12189 pc11 12284 pcz 12285 pockthlem 12308 1arith 12319 grpinvcnv 12767 discld 12930 isneip 12940 restopnb 12975 restopn2 12977 restdis 12978 lmbr2 13008 cnptoprest 13033 cnptoprest2 13034 tx1cn 13063 tx2cn 13064 txcnmpt 13067 txrest 13070 elbl2ps 13186 elbl2 13187 blcomps 13190 blcom 13191 xblpnfps 13192 xblpnf 13193 blpnf 13194 xmeter 13230 bdxmet 13295 metrest 13300 xmetxp 13301 metcn 13308 cncffvrn 13363 reefiso 13492 |
Copyright terms: Public domain | W3C validator |