Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4d | Unicode version |
Description: Deduction form of bitr4i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4d.1 | |
bitr4d.2 |
Ref | Expression |
---|---|
bitr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4d.1 | . 2 | |
2 | bitr4d.2 | . . 3 | |
3 | 2 | bicomd 140 | . 2 |
4 | 1, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2d 215 3bitr2rd 216 3bitr4d 219 3bitr4rd 220 mpbirand 438 mpbiran2d 439 bianabs 601 imordc 883 3anibar 1150 xor2dc 1372 bilukdc 1378 reuhypd 4429 opelresi 4874 iota1 5146 funbrfv2b 5510 dffn5im 5511 fneqeql 5572 f1ompt 5615 dff13 5713 fliftcnv 5740 isotr 5761 isoini 5763 caovord3 5988 releldm2 6127 tpostpos 6205 nnsssuc 6442 nnaordi 6448 iserd 6499 ecdmn0m 6515 qliftel 6553 qliftfun 6555 qliftf 6558 ecopovsym 6569 mapen 6784 supisolem 6944 cnvti 6955 omp1eomlem 7028 ctssdc 7047 isomnimap 7063 ismkvmap 7080 iswomnimap 7092 recmulnqg 7294 nqtri3or 7299 ltmnqg 7304 mullocprlem 7473 addextpr 7524 gt0srpr 7651 ltsosr 7667 ltasrg 7673 map2psrprg 7708 xrlenlt 7925 letri3 7941 subadd 8061 ltsubadd2 8291 lesubadd2 8293 suble 8298 ltsub23 8300 ltaddpos2 8311 ltsubpos 8312 subge02 8336 ltaddsublt 8429 reapneg 8455 apsym 8464 apti 8480 leltap 8483 ap0gt0 8498 divmulap 8531 divmulap3 8533 rec11rap 8567 ltdiv1 8722 ltdivmul2 8732 ledivmul2 8734 ltrec 8737 suprleubex 8808 nnle1eq1 8840 avgle1 9056 avgle2 9057 nn0le0eq0 9101 znnnlt1 9198 zleltp1 9205 elz2 9218 uzm1 9452 uzin 9454 difrp 9581 xrletri3 9691 xgepnf 9702 xltnegi 9721 xltadd1 9762 xposdif 9768 xleaddadd 9773 elioo5 9819 elfz5 9902 fzdifsuc 9965 elfzm11 9975 uzsplit 9976 elfzonelfzo 10111 qtri3or 10124 qavgle 10140 flqbi 10171 flqbi2 10172 zmodid2 10233 q2submod 10266 sqap0 10467 lt2sq 10474 le2sq 10475 nn0opthlem1d 10576 bcval5 10619 zfz1isolemiso 10692 shftfib 10705 mulreap 10746 caucvgrelemcau 10862 caucvgre 10863 elicc4abs 10976 abs2difabs 10990 cau4 10998 maxclpr 11104 negfi 11109 lemininf 11115 mul0inf 11122 xrlemininf 11150 xrminltinf 11151 clim2 11162 climeq 11178 fisumss 11271 fsumabs 11344 isumshft 11369 absefib 11649 dvdsval3 11669 dvdslelemd 11716 dvdsabseq 11720 dvdsflip 11724 dvdsssfz1 11725 zeo3 11740 ndvdsadd 11803 dvdssq 11895 algcvgblem 11906 lcmdvds 11936 ncoprmgcdgt1b 11947 isprm3 11975 phiprmpw 12074 prmdiv 12087 discld 12496 isneip 12506 restopnb 12541 restopn2 12543 restdis 12544 lmbr2 12574 cnptoprest 12599 cnptoprest2 12600 tx1cn 12629 tx2cn 12630 txcnmpt 12633 txrest 12636 elbl2ps 12752 elbl2 12753 blcomps 12756 blcom 12757 xblpnfps 12758 xblpnf 12759 blpnf 12760 xmeter 12796 bdxmet 12861 metrest 12866 xmetxp 12867 metcn 12874 cncffvrn 12929 reefiso 13058 |
Copyright terms: Public domain | W3C validator |