ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem Unicode version

Theorem frecsuclem 6409
Description: Lemma for frecsuc 6410. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.)
Hypothesis
Ref Expression
frecsuclem.g  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frecsuclem  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Distinct variable groups:    A, g, m, x    B, g, m, x   
g, F, m, x   
z, F, m, x   
g, G, m, x    S, m, x, z
Allowed substitution hints:    A( z)    B( z)    S( g)    G( z)

Proof of Theorem frecsuclem
Dummy variables  f  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6394 . . . . . . . . . . . . 13  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
2 frecsuclem.g . . . . . . . . . . . . . . 15  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3 recseq 6309 . . . . . . . . . . . . . . 15  |-  ( G  =  ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  -> recs ( G
)  = recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
42, 3ax-mp 5 . . . . . . . . . . . . . 14  |- recs ( G )  = recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
54reseq1i 4905 . . . . . . . . . . . . 13  |-  (recs ( G )  |`  om )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
61, 5eqtr4i 2201 . . . . . . . . . . . 12  |- frec ( F ,  A )  =  (recs ( G )  |`  om )
76fveq1i 5518 . . . . . . . . . . 11  |-  (frec ( F ,  A ) `
 suc  B )  =  ( (recs ( G )  |`  om ) `  suc  B )
8 peano2 4596 . . . . . . . . . . . 12  |-  ( B  e.  om  ->  suc  B  e.  om )
9 fvres 5541 . . . . . . . . . . . 12  |-  ( suc 
B  e.  om  ->  ( (recs ( G )  |`  om ) `  suc  B )  =  (recs ( G ) `  suc  B ) )
108, 9syl 14 . . . . . . . . . . 11  |-  ( B  e.  om  ->  (
(recs ( G )  |`  om ) `  suc  B )  =  (recs ( G ) `  suc  B ) )
117, 10eqtrid 2222 . . . . . . . . . 10  |-  ( B  e.  om  ->  (frec ( F ,  A ) `
 suc  B )  =  (recs ( G ) `
 suc  B )
)
12113ad2ant3 1020 . . . . . . . . 9  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  (recs ( G ) `
 suc  B )
)
13 eqid 2177 . . . . . . . . . . 11  |- recs ( G )  = recs ( G )
142funmpt2 5257 . . . . . . . . . . . 12  |-  Fun  G
1514a1i 9 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  Fun  G )
16 ordom 4608 . . . . . . . . . . . 12  |-  Ord  om
1716a1i 9 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  Ord  om )
18 vex 2742 . . . . . . . . . . . . . 14  |-  f  e. 
_V
1918a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  f  e.  _V )
20 simp2 998 . . . . . . . . . . . . . 14  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  y  e.  om )
21 simp3 999 . . . . . . . . . . . . . 14  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  f :
y --> S )
22 simp11 1027 . . . . . . . . . . . . . . 15  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  A. z  e.  S  ( F `  z )  e.  S
)
23 fveq2 5517 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
2423eleq1d 2246 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
( F `  z
)  e.  S  <->  ( F `  w )  e.  S
) )
2524cbvralv 2705 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  S  ( F `  z )  e.  S  <->  A. w  e.  S  ( F `  w )  e.  S )
2622, 25sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  A. w  e.  S  ( F `  w )  e.  S
)
27 simp12 1028 . . . . . . . . . . . . . 14  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  A  e.  S )
2820, 21, 26, 27frecabcl 6402 . . . . . . . . . . . . 13  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )
29 dmeq 4829 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  f  ->  dom  g  =  dom  f )
3029eqeq1d 2186 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  f  ->  ( dom  g  =  suc  m 
<->  dom  f  =  suc  m ) )
31 fveq1 5516 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  f  ->  (
g `  m )  =  ( f `  m ) )
3231fveq2d 5521 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  f  ->  ( F `  ( g `  m ) )  =  ( F `  (
f `  m )
) )
3332eleq2d 2247 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  f  ->  (
x  e.  ( F `
 ( g `  m ) )  <->  x  e.  ( F `  ( f `
 m ) ) ) )
3430, 33anbi12d 473 . . . . . . . . . . . . . . . . 17  |-  ( g  =  f  ->  (
( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `  m
) ) ) ) )
3534rexbidv 2478 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) ) ) )
3629eqeq1d 2186 . . . . . . . . . . . . . . . . 17  |-  ( g  =  f  ->  ( dom  g  =  (/)  <->  dom  f  =  (/) ) )
3736anbi1d 465 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (
( dom  g  =  (/) 
/\  x  e.  A
)  <->  ( dom  f  =  (/)  /\  x  e.  A ) ) )
3835, 37orbi12d 793 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) ) )
3938abbidv 2295 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
4039, 2fvmptg 5594 . . . . . . . . . . . . 13  |-  ( ( f  e.  _V  /\  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )  -> 
( G `  f
)  =  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
4119, 28, 40syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  ( G `  f )  =  {
x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
4241, 28eqeltrd 2254 . . . . . . . . . . 11  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  om  /\  f : y --> S )  ->  ( G `  f )  e.  S
)
43 limom 4615 . . . . . . . . . . . . . . 15  |-  Lim  om
44 limuni 4398 . . . . . . . . . . . . . . 15  |-  ( Lim 
om  ->  om  =  U. om )
4543, 44ax-mp 5 . . . . . . . . . . . . . 14  |-  om  =  U. om
4645eleq2i 2244 . . . . . . . . . . . . 13  |-  ( y  e.  om  <->  y  e.  U.
om )
47 peano2 4596 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  suc  y  e.  om )
4846, 47sylbir 135 . . . . . . . . . . . 12  |-  ( y  e.  U. om  ->  suc  y  e.  om )
4948adantl 277 . . . . . . . . . . 11  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e.  om )  /\  y  e.  U. om )  ->  suc  y  e.  om )
5045eleq2i 2244 . . . . . . . . . . . . 13  |-  ( suc 
B  e.  om  <->  suc  B  e. 
U. om )
518, 50sylib 122 . . . . . . . . . . . 12  |-  ( B  e.  om  ->  suc  B  e.  U. om )
52513ad2ant3 1020 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  suc  B  e.  U. om )
5313, 15, 17, 42, 49, 52tfrcldm 6366 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  suc  B  e.  dom recs ( G
) )
5413tfr2a 6324 . . . . . . . . . 10  |-  ( suc 
B  e.  dom recs ( G )  ->  (recs ( G ) `  suc  B )  =  ( G `
 (recs ( G )  |`  suc  B ) ) )
5553, 54syl 14 . . . . . . . . 9  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (recs ( G ) `  suc  B )  =  ( G `
 (recs ( G )  |`  suc  B ) ) )
5612, 55eqtrd 2210 . . . . . . . 8  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( G `  (recs ( G )  |`  suc  B ) ) )
57 tfrfun 6323 . . . . . . . . . . 11  |-  Fun recs ( G )
5857a1i 9 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  Fun recs ( G ) )
5983ad2ant3 1020 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  suc  B  e.  om )
60 resfunexg 5739 . . . . . . . . . 10  |-  ( ( Fun recs ( G )  /\  suc  B  e. 
om )  ->  (recs ( G )  |`  suc  B
)  e.  _V )
6158, 59, 60syl2anc 411 . . . . . . . . 9  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (recs ( G )  |`  suc  B
)  e.  _V )
62 frecfcl 6408 . . . . . . . . . . . . 13  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
636feq1i 5360 . . . . . . . . . . . . 13  |-  (frec ( F ,  A ) : om --> S  <->  (recs ( G )  |`  om ) : om --> S )
6462, 63sylib 122 . . . . . . . . . . . 12  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  ->  (recs ( G )  |`  om ) : om --> S )
65643adant3 1017 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (recs ( G )  |`  om ) : om --> S )
66 simp3 999 . . . . . . . . . . . 12  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  B  e.  om )
67 ordelsuc 4506 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  Ord  om )  ->  ( B  e.  om  <->  suc  B  C_  om ) )
6816, 67mpan2 425 . . . . . . . . . . . . 13  |-  ( B  e.  om  ->  ( B  e.  om  <->  suc  B  C_  om ) )
69683ad2ant3 1020 . . . . . . . . . . . 12  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( B  e.  om  <->  suc  B  C_  om ) )
7066, 69mpbid 147 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  suc  B 
C_  om )
71 fssres2 5395 . . . . . . . . . . 11  |-  ( ( (recs ( G )  |`  om ) : om --> S  /\  suc  B  C_  om )  ->  (recs ( G )  |`  suc  B
) : suc  B --> S )
7265, 70, 71syl2anc 411 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (recs ( G )  |`  suc  B
) : suc  B --> S )
73 simp1 997 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  A. z  e.  S  ( F `  z )  e.  S
)
7473, 25sylib 122 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  A. w  e.  S  ( F `  w )  e.  S
)
75 simp2 998 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  A  e.  S )
7659, 72, 74, 75frecabcl 6402 . . . . . . . . 9  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  e.  S )
77 dmeq 4829 . . . . . . . . . . . . . . 15  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  dom  g  =  dom  (recs ( G )  |`  suc  B ) )
7877eqeq1d 2186 . . . . . . . . . . . . . 14  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( dom  g  =  suc  m  <->  dom  (recs ( G )  |`  suc  B
)  =  suc  m
) )
79 fveq1 5516 . . . . . . . . . . . . . . . 16  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( g `  m )  =  ( (recs ( G )  |`  suc  B ) `  m ) )
8079fveq2d 5521 . . . . . . . . . . . . . . 15  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( F `  ( g `  m
) )  =  ( F `  ( (recs ( G )  |`  suc  B ) `  m
) ) )
8180eleq2d 2247 . . . . . . . . . . . . . 14  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( x  e.  ( F `  (
g `  m )
)  <->  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) )
8278, 81anbi12d 473 . . . . . . . . . . . . 13  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )  <-> 
( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) )
8382rexbidv 2478 . . . . . . . . . . . 12  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) )
8477eqeq1d 2186 . . . . . . . . . . . . 13  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( dom  g  =  (/)  <->  dom  (recs ( G )  |`  suc  B )  =  (/) ) )
8584anbi1d 465 . . . . . . . . . . . 12  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( ( dom  g  =  (/)  /\  x  e.  A )  <->  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A ) ) )
8683, 85orbi12d 793 . . . . . . . . . . 11  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A ) ) ) )
8786abbidv 2295 . . . . . . . . . 10  |-  ( g  =  (recs ( G )  |`  suc  B )  ->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) } )
8887, 2fvmptg 5594 . . . . . . . . 9  |-  ( ( (recs ( G )  |`  suc  B )  e. 
_V  /\  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) }  e.  S )  ->  ( G `  (recs ( G )  |`  suc  B
) )  =  {
x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A ) ) } )
8961, 76, 88syl2anc 411 . . . . . . . 8  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( G `  (recs ( G )  |`  suc  B
) )  =  {
x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A ) ) } )
9056, 89eqtrd 2210 . . . . . . 7  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  { x  |  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) } )
9190abeq2d 2290 . . . . . 6  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (
x  e.  (frec ( F ,  A ) `
 suc  B )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) ) )
92 fdm 5373 . . . . . . . . . . . 12  |-  ( (recs ( G )  |`  suc  B ) : suc  B --> S  ->  dom  (recs ( G )  |`  suc  B
)  =  suc  B
)
9372, 92syl 14 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  dom  (recs ( G )  |`  suc  B )  =  suc  B )
94 peano3 4597 . . . . . . . . . . . 12  |-  ( B  e.  om  ->  suc  B  =/=  (/) )
95943ad2ant3 1020 . . . . . . . . . . 11  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  suc  B  =/=  (/) )
9693, 95eqnetrd 2371 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  dom  (recs ( G )  |`  suc  B )  =/=  (/) )
9796neneqd 2368 . . . . . . . . 9  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  -.  dom  (recs ( G )  |`  suc  B )  =  (/) )
9897intnanrd 932 . . . . . . . 8  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  -.  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A ) )
99 biorf 744 . . . . . . . 8  |-  ( -.  ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  <->  ( ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
)  \/  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) ) )
10098, 99syl 14 . . . . . . 7  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  <->  ( ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
)  \/  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) ) )
101 orcom 728 . . . . . . 7  |-  ( ( ( dom  (recs ( G )  |`  suc  B
)  =  (/)  /\  x  e.  A )  \/  E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) ) )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) )
102100, 101bitrdi 196 . . . . . 6  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  <->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  \/  ( dom  (recs ( G )  |`  suc  B )  =  (/)  /\  x  e.  A
) ) ) )
10393eqeq1d 2186 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  <->  suc  B  =  suc  m ) )
104 vex 2742 . . . . . . . . . . . 12  |-  m  e. 
_V
105 suc11g 4558 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  m  e.  _V )  ->  ( suc  B  =  suc  m  <->  B  =  m ) )
106104, 105mpan2 425 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( suc  B  =  suc  m  <->  B  =  m ) )
1071063ad2ant3 1020 . . . . . . . . . 10  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( suc  B  =  suc  m  <->  B  =  m ) )
108103, 107bitrd 188 . . . . . . . . 9  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  <->  B  =  m ) )
109 eqcom 2179 . . . . . . . . 9  |-  ( B  =  m  <->  m  =  B )
110108, 109bitrdi 196 . . . . . . . 8  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  <->  m  =  B ) )
111110anbi1d 465 . . . . . . 7  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (
( dom  (recs ( G )  |`  suc  B
)  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) )  <->  ( m  =  B  /\  x  e.  ( F `  (
(recs ( G )  |`  suc  B ) `  m ) ) ) ) )
112111rexbidv 2478 . . . . . 6  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( E. m  e.  om  ( dom  (recs ( G )  |`  suc  B )  =  suc  m  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  <->  E. m  e.  om  ( m  =  B  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
) ) ) )
11391, 102, 1123bitr2d 216 . . . . 5  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (
x  e.  (frec ( F ,  A ) `
 suc  B )  <->  E. m  e.  om  (
m  =  B  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) ) ) )
114 fveq2 5517 . . . . . . . 8  |-  ( m  =  B  ->  (
(recs ( G )  |`  suc  B ) `  m )  =  ( (recs ( G )  |`  suc  B ) `  B ) )
115114fveq2d 5521 . . . . . . 7  |-  ( m  =  B  ->  ( F `  ( (recs ( G )  |`  suc  B
) `  m )
)  =  ( F `
 ( (recs ( G )  |`  suc  B
) `  B )
) )
116115eleq2d 2247 . . . . . 6  |-  ( m  =  B  ->  (
x  e.  ( F `
 ( (recs ( G )  |`  suc  B
) `  m )
)  <->  x  e.  ( F `  ( (recs ( G )  |`  suc  B
) `  B )
) ) )
117116ceqsrexbv 2870 . . . . 5  |-  ( E. m  e.  om  (
m  =  B  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 m ) ) )  <->  ( B  e. 
om  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `  B
) ) ) )
118113, 117bitrdi 196 . . . 4  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (
x  e.  (frec ( F ,  A ) `
 suc  B )  <->  ( B  e.  om  /\  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `
 B ) ) ) ) )
1191183anibar 1165 . . 3  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (
x  e.  (frec ( F ,  A ) `
 suc  B )  <->  x  e.  ( F `  ( (recs ( G )  |`  suc  B ) `  B ) ) ) )
120119eqrdv 2175 . 2  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  ( (recs ( G )  |`  suc  B ) `  B ) ) )
121 sucidg 4418 . . . . . 6  |-  ( B  e.  om  ->  B  e.  suc  B )
122 fvres 5541 . . . . . 6  |-  ( B  e.  suc  B  -> 
( (recs ( G )  |`  suc  B ) `
 B )  =  (recs ( G ) `
 B ) )
123121, 122syl 14 . . . . 5  |-  ( B  e.  om  ->  (
(recs ( G )  |`  suc  B ) `  B )  =  (recs ( G ) `  B ) )
1246fveq1i 5518 . . . . . 6  |-  (frec ( F ,  A ) `
 B )  =  ( (recs ( G )  |`  om ) `  B )
125 fvres 5541 . . . . . 6  |-  ( B  e.  om  ->  (
(recs ( G )  |`  om ) `  B
)  =  (recs ( G ) `  B
) )
126124, 125eqtrid 2222 . . . . 5  |-  ( B  e.  om  ->  (frec ( F ,  A ) `
 B )  =  (recs ( G ) `
 B ) )
127123, 126eqtr4d 2213 . . . 4  |-  ( B  e.  om  ->  (
(recs ( G )  |`  suc  B ) `  B )  =  (frec ( F ,  A
) `  B )
)
1281273ad2ant3 1020 . . 3  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (
(recs ( G )  |`  suc  B ) `  B )  =  (frec ( F ,  A
) `  B )
)
129128fveq2d 5521 . 2  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  ( F `  ( (recs ( G )  |`  suc  B
) `  B )
)  =  ( F `
 (frec ( F ,  A ) `  B ) ) )
130120, 129eqtrd 2210 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163    =/= wne 2347   A.wral 2455   E.wrex 2456   _Vcvv 2739    C_ wss 3131   (/)c0 3424   U.cuni 3811    |-> cmpt 4066   Ord word 4364   Lim wlim 4366   suc csuc 4367   omcom 4591   dom cdm 4628    |` cres 4630   Fun wfun 5212   -->wf 5214   ` cfv 5218  recscrecs 6307  freccfrec 6393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-recs 6308  df-frec 6394
This theorem is referenced by:  frecsuc  6410
  Copyright terms: Public domain W3C validator