ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp1a Unicode version

Theorem leexp1a 10500
Description: Weak base ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) )

Proof of Theorem leexp1a
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5844 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
2 oveq2 5844 . . . . . . 7  |-  ( j  =  0  ->  ( B ^ j )  =  ( B ^ 0 ) )
31, 2breq12d 3989 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ 0 )  <_ 
( B ^ 0 ) ) )
43imbi2d 229 . . . . 5  |-  ( j  =  0  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
0 )  <_  ( B ^ 0 ) ) ) )
5 oveq2 5844 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
6 oveq2 5844 . . . . . . 7  |-  ( j  =  k  ->  ( B ^ j )  =  ( B ^ k
) )
75, 6breq12d 3989 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ k )  <_ 
( B ^ k
) ) )
87imbi2d 229 . . . . 5  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
k )  <_  ( B ^ k ) ) ) )
9 oveq2 5844 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
10 oveq2 5844 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( B ^ j )  =  ( B ^ (
k  +  1 ) ) )
119, 10breq12d 3989 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) )
1211imbi2d 229 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
( k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) ) ) )
13 oveq2 5844 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
14 oveq2 5844 . . . . . . 7  |-  ( j  =  N  ->  ( B ^ j )  =  ( B ^ N
) )
1513, 14breq12d 3989 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ N )  <_  ( B ^ N ) ) )
1615imbi2d 229 . . . . 5  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) )
17 recn 7877 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
18 recn 7877 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
19 exp0 10449 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2019adantr 274 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  =  1 )
21 1le1 8461 . . . . . . . . 9  |-  1  <_  1
2220, 21eqbrtrdi 4015 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  <_  1 )
23 exp0 10449 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
2423adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 0 )  =  1 )
2522, 24breqtrrd 4004 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  <_  ( B ^ 0 ) )
2617, 18, 25syl2an 287 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ^ 0 )  <_  ( B ^ 0 ) )
2726adantr 274 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A ^ 0 )  <_ 
( B ^ 0 ) )
28 simpll 519 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  A  e.  RR )
29 reexpcl 10462 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
3028, 29sylan 281 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  RR )
31 simplll 523 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  A  e.  RR )
32 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
33 simplrl 525 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  0  <_  A
)
34 expge0 10481 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
3531, 32, 33, 34syl3anc 1227 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  0  <_  ( A ^ k ) )
36 simplr 520 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  B  e.  RR )
37 reexpcl 10462 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3836, 37sylan 281 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( B ^
k )  e.  RR )
3930, 35, 38jca31 307 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  e.  RR  /\  0  <_  ( A ^ k
) )  /\  ( B ^ k )  e.  RR ) )
40 simpl 108 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
41 simpl 108 . . . . . . . . . . . . . 14  |-  ( ( 0  <_  A  /\  A  <_  B )  -> 
0  <_  A )
4240, 41anim12i 336 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A  e.  RR  /\  0  <_  A ) )
4342adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A  e.  RR  /\  0  <_  A ) )
44 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  B  e.  RR )
4539, 43, 44jca32 308 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( ( ( A ^ k
)  e.  RR  /\  0  <_  ( A ^
k ) )  /\  ( B ^ k )  e.  RR )  /\  ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) ) )
4645adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( ( ( A ^ k
)  e.  RR  /\  0  <_  ( A ^
k ) )  /\  ( B ^ k )  e.  RR )  /\  ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) ) )
47 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
k )  <_  ( B ^ k ) )
48 simplrr 526 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  A  <_  B
)
4948adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  A  <_  B
)
5047, 49jca 304 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( A ^ k )  <_ 
( B ^ k
)  /\  A  <_  B ) )
51 lemul12a 8748 . . . . . . . . . 10  |-  ( ( ( ( ( A ^ k )  e.  RR  /\  0  <_ 
( A ^ k
) )  /\  ( B ^ k )  e.  RR )  /\  (
( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) )  ->  (
( ( A ^
k )  <_  ( B ^ k )  /\  A  <_  B )  -> 
( ( A ^
k )  x.  A
)  <_  ( ( B ^ k )  x.  B ) ) )
5246, 50, 51sylc 62 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( A ^ k )  x.  A )  <_  (
( B ^ k
)  x.  B ) )
53 expp1 10452 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5417, 53sylan 281 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5554adantlr 469 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5655adantlr 469 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5756adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
58 expp1 10452 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
5918, 58sylan 281 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6059adantll 468 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6160adantlr 469 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6261adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6352, 57, 623brtr4d 4008 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
( k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) )
6463ex 114 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( A ^ k )  <_ 
( B ^ k
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) )
6564expcom 115 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  (
( A ^ k
)  <_  ( B ^ k )  -> 
( A ^ (
k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) ) ) )
6665a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) ) )
674, 8, 12, 16, 27, 66nn0ind 9296 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A ^ N )  <_ 
( B ^ N
) ) )
6867exp4c 366 . . 3  |-  ( N  e.  NN0  ->  ( A  e.  RR  ->  ( B  e.  RR  ->  ( ( 0  <_  A  /\  A  <_  B )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) ) )
6968com3l 81 . 2  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( N  e.  NN0  ->  ( ( 0  <_  A  /\  A  <_  B )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) ) )
70693imp1 1209 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3976  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744   1c1 7745    + caddc 7747    x. cmul 7749    <_ cle 7925   NN0cn0 9105   ^cexp 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-seqfrec 10371  df-exp 10445
This theorem is referenced by:  expubnd  10502  facubnd  10647  expcnvre  11430
  Copyright terms: Public domain W3C validator