ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp1a Unicode version

Theorem leexp1a 10811
Description: Weak base ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) )

Proof of Theorem leexp1a
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6008 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
2 oveq2 6008 . . . . . . 7  |-  ( j  =  0  ->  ( B ^ j )  =  ( B ^ 0 ) )
31, 2breq12d 4095 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ 0 )  <_ 
( B ^ 0 ) ) )
43imbi2d 230 . . . . 5  |-  ( j  =  0  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
0 )  <_  ( B ^ 0 ) ) ) )
5 oveq2 6008 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
6 oveq2 6008 . . . . . . 7  |-  ( j  =  k  ->  ( B ^ j )  =  ( B ^ k
) )
75, 6breq12d 4095 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ k )  <_ 
( B ^ k
) ) )
87imbi2d 230 . . . . 5  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
k )  <_  ( B ^ k ) ) ) )
9 oveq2 6008 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
10 oveq2 6008 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( B ^ j )  =  ( B ^ (
k  +  1 ) ) )
119, 10breq12d 4095 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) )
1211imbi2d 230 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
( k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) ) ) )
13 oveq2 6008 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
14 oveq2 6008 . . . . . . 7  |-  ( j  =  N  ->  ( B ^ j )  =  ( B ^ N
) )
1513, 14breq12d 4095 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ N )  <_  ( B ^ N ) ) )
1615imbi2d 230 . . . . 5  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) )
17 recn 8128 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
18 recn 8128 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
19 exp0 10760 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2019adantr 276 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  =  1 )
21 1le1 8715 . . . . . . . . 9  |-  1  <_  1
2220, 21eqbrtrdi 4121 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  <_  1 )
23 exp0 10760 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
2423adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 0 )  =  1 )
2522, 24breqtrrd 4110 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  <_  ( B ^ 0 ) )
2617, 18, 25syl2an 289 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ^ 0 )  <_  ( B ^ 0 ) )
2726adantr 276 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A ^ 0 )  <_ 
( B ^ 0 ) )
28 simpll 527 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  A  e.  RR )
29 reexpcl 10773 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
3028, 29sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  RR )
31 simplll 533 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  A  e.  RR )
32 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
33 simplrl 535 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  0  <_  A
)
34 expge0 10792 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
3531, 32, 33, 34syl3anc 1271 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  0  <_  ( A ^ k ) )
36 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  B  e.  RR )
37 reexpcl 10773 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3836, 37sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( B ^
k )  e.  RR )
3930, 35, 38jca31 309 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  e.  RR  /\  0  <_  ( A ^ k
) )  /\  ( B ^ k )  e.  RR ) )
40 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
41 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( 0  <_  A  /\  A  <_  B )  -> 
0  <_  A )
4240, 41anim12i 338 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A  e.  RR  /\  0  <_  A ) )
4342adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A  e.  RR  /\  0  <_  A ) )
44 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  B  e.  RR )
4539, 43, 44jca32 310 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( ( ( A ^ k
)  e.  RR  /\  0  <_  ( A ^
k ) )  /\  ( B ^ k )  e.  RR )  /\  ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) ) )
4645adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( ( ( A ^ k
)  e.  RR  /\  0  <_  ( A ^
k ) )  /\  ( B ^ k )  e.  RR )  /\  ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) ) )
47 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
k )  <_  ( B ^ k ) )
48 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  A  <_  B
)
4948adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  A  <_  B
)
5047, 49jca 306 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( A ^ k )  <_ 
( B ^ k
)  /\  A  <_  B ) )
51 lemul12a 9005 . . . . . . . . . 10  |-  ( ( ( ( ( A ^ k )  e.  RR  /\  0  <_ 
( A ^ k
) )  /\  ( B ^ k )  e.  RR )  /\  (
( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) )  ->  (
( ( A ^
k )  <_  ( B ^ k )  /\  A  <_  B )  -> 
( ( A ^
k )  x.  A
)  <_  ( ( B ^ k )  x.  B ) ) )
5246, 50, 51sylc 62 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( A ^ k )  x.  A )  <_  (
( B ^ k
)  x.  B ) )
53 expp1 10763 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5417, 53sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5554adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5655adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5756adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
58 expp1 10763 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
5918, 58sylan 283 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6059adantll 476 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6160adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6261adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6352, 57, 623brtr4d 4114 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
( k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) )
6463ex 115 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( A ^ k )  <_ 
( B ^ k
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) )
6564expcom 116 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  (
( A ^ k
)  <_  ( B ^ k )  -> 
( A ^ (
k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) ) ) )
6665a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) ) )
674, 8, 12, 16, 27, 66nn0ind 9557 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A ^ N )  <_ 
( B ^ N
) ) )
6867exp4c 368 . . 3  |-  ( N  e.  NN0  ->  ( A  e.  RR  ->  ( B  e.  RR  ->  ( ( 0  <_  A  /\  A  <_  B )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) ) )
6968com3l 81 . 2  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( N  e.  NN0  ->  ( ( 0  <_  A  /\  A  <_  B )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) ) )
70693imp1 1244 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    <_ cle 8178   NN0cn0 9365   ^cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  expubnd  10813  facubnd  10962  expcnvre  12009
  Copyright terms: Public domain W3C validator