| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leexp1a | Unicode version | ||
| Description: Weak base ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.) |
| Ref | Expression |
|---|---|
| leexp1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . . . . 7
| |
| 2 | oveq2 5975 |
. . . . . . 7
| |
| 3 | 1, 2 | breq12d 4072 |
. . . . . 6
|
| 4 | 3 | imbi2d 230 |
. . . . 5
|
| 5 | oveq2 5975 |
. . . . . . 7
| |
| 6 | oveq2 5975 |
. . . . . . 7
| |
| 7 | 5, 6 | breq12d 4072 |
. . . . . 6
|
| 8 | 7 | imbi2d 230 |
. . . . 5
|
| 9 | oveq2 5975 |
. . . . . . 7
| |
| 10 | oveq2 5975 |
. . . . . . 7
| |
| 11 | 9, 10 | breq12d 4072 |
. . . . . 6
|
| 12 | 11 | imbi2d 230 |
. . . . 5
|
| 13 | oveq2 5975 |
. . . . . . 7
| |
| 14 | oveq2 5975 |
. . . . . . 7
| |
| 15 | 13, 14 | breq12d 4072 |
. . . . . 6
|
| 16 | 15 | imbi2d 230 |
. . . . 5
|
| 17 | recn 8093 |
. . . . . . 7
| |
| 18 | recn 8093 |
. . . . . . 7
| |
| 19 | exp0 10725 |
. . . . . . . . . 10
| |
| 20 | 19 | adantr 276 |
. . . . . . . . 9
|
| 21 | 1le1 8680 |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqbrtrdi 4098 |
. . . . . . . 8
|
| 23 | exp0 10725 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 22, 24 | breqtrrd 4087 |
. . . . . . 7
|
| 26 | 17, 18, 25 | syl2an 289 |
. . . . . 6
|
| 27 | 26 | adantr 276 |
. . . . 5
|
| 28 | simpll 527 |
. . . . . . . . . . . . . 14
| |
| 29 | reexpcl 10738 |
. . . . . . . . . . . . . 14
| |
| 30 | 28, 29 | sylan 283 |
. . . . . . . . . . . . 13
|
| 31 | simplll 533 |
. . . . . . . . . . . . . 14
| |
| 32 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 33 | simplrl 535 |
. . . . . . . . . . . . . 14
| |
| 34 | expge0 10757 |
. . . . . . . . . . . . . 14
| |
| 35 | 31, 32, 33, 34 | syl3anc 1250 |
. . . . . . . . . . . . 13
|
| 36 | simplr 528 |
. . . . . . . . . . . . . 14
| |
| 37 | reexpcl 10738 |
. . . . . . . . . . . . . 14
| |
| 38 | 36, 37 | sylan 283 |
. . . . . . . . . . . . 13
|
| 39 | 30, 35, 38 | jca31 309 |
. . . . . . . . . . . 12
|
| 40 | simpl 109 |
. . . . . . . . . . . . . 14
| |
| 41 | simpl 109 |
. . . . . . . . . . . . . 14
| |
| 42 | 40, 41 | anim12i 338 |
. . . . . . . . . . . . 13
|
| 43 | 42 | adantr 276 |
. . . . . . . . . . . 12
|
| 44 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 45 | 39, 43, 44 | jca32 310 |
. . . . . . . . . . 11
|
| 46 | 45 | adantr 276 |
. . . . . . . . . 10
|
| 47 | simpr 110 |
. . . . . . . . . . 11
| |
| 48 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 49 | 48 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | 47, 49 | jca 306 |
. . . . . . . . . 10
|
| 51 | lemul12a 8970 |
. . . . . . . . . 10
| |
| 52 | 46, 50, 51 | sylc 62 |
. . . . . . . . 9
|
| 53 | expp1 10728 |
. . . . . . . . . . . . 13
| |
| 54 | 17, 53 | sylan 283 |
. . . . . . . . . . . 12
|
| 55 | 54 | adantlr 477 |
. . . . . . . . . . 11
|
| 56 | 55 | adantlr 477 |
. . . . . . . . . 10
|
| 57 | 56 | adantr 276 |
. . . . . . . . 9
|
| 58 | expp1 10728 |
. . . . . . . . . . . . 13
| |
| 59 | 18, 58 | sylan 283 |
. . . . . . . . . . . 12
|
| 60 | 59 | adantll 476 |
. . . . . . . . . . 11
|
| 61 | 60 | adantlr 477 |
. . . . . . . . . 10
|
| 62 | 61 | adantr 276 |
. . . . . . . . 9
|
| 63 | 52, 57, 62 | 3brtr4d 4091 |
. . . . . . . 8
|
| 64 | 63 | ex 115 |
. . . . . . 7
|
| 65 | 64 | expcom 116 |
. . . . . 6
|
| 66 | 65 | a2d 26 |
. . . . 5
|
| 67 | 4, 8, 12, 16, 27, 66 | nn0ind 9522 |
. . . 4
|
| 68 | 67 | exp4c 368 |
. . 3
|
| 69 | 68 | com3l 81 |
. 2
|
| 70 | 69 | 3imp1 1223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-exp 10721 |
| This theorem is referenced by: expubnd 10778 facubnd 10927 expcnvre 11929 |
| Copyright terms: Public domain | W3C validator |