ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le Unicode version

Theorem ledivge1le 9792
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 9791 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  <_  1  <->  A  <_  B ) )
21adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  <->  A  <_  B ) )
3 rerpdivcl 9750 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
43adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  /  B
)  e.  RR )
5 1red 8034 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  1  e.  RR )
6 rpre 9726 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  C  e.  RR )
76adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  C  e.  RR )
8 letr 8102 . . . . . . . . . 10  |-  ( ( ( A  /  B
)  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( ( A  /  B )  <_  1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
94, 5, 7, 8syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( ( A  /  B )  <_ 
1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
109expd 258 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
112, 10sylbird 170 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  <_  B  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
1211com23 78 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( 1  <_  C  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) )
1312expimpd 363 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( C  e.  RR+  /\  1  <_  C
)  ->  ( A  <_  B  ->  ( A  /  B )  <_  C
) ) )
1413ex 115 . . . 4  |-  ( A  e.  RR  ->  ( B  e.  RR+  ->  (
( C  e.  RR+  /\  1  <_  C )  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) ) )
15143imp1 1222 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  B
)  <_  C )
16 simp1 999 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  ->  A  e.  RR )
176adantr 276 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  C  e.  RR )
18 0lt1 8146 . . . . . . . . . 10  |-  0  <  1
19 0red 8020 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  0  e.  RR )
20 1red 8034 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  1  e.  RR )
21 ltletr 8109 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( 0  <  1  /\  1  <_  C )  ->  0  <  C
) )
2219, 20, 6, 21syl3anc 1249 . . . . . . . . . 10  |-  ( C  e.  RR+  ->  ( ( 0  <  1  /\  1  <_  C )  ->  0  <  C ) )
2318, 22mpani 430 . . . . . . . . 9  |-  ( C  e.  RR+  ->  ( 1  <_  C  ->  0  <  C ) )
2423imp 124 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  0  <  C )
2517, 24jca 306 . . . . . . 7  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  ( C  e.  RR  /\  0  <  C ) )
26253ad2ant3 1022 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( C  e.  RR  /\  0  <  C ) )
27 rpregt0 9733 . . . . . . 7  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <  B ) )
28273ad2ant2 1021 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( B  e.  RR  /\  0  <  B ) )
2916, 26, 283jca 1179 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
3029adantr 276 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
31 lediv23 8912 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3230, 31syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3315, 32mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  C
)  <_  B )
3433ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    < clt 8054    <_ cle 8055    / cdiv 8691   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-rp 9720
This theorem is referenced by:  gausslemma2dlem1a  15174
  Copyright terms: Public domain W3C validator