ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le Unicode version

Theorem ledivge1le 9922
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 9921 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  <_  1  <->  A  <_  B ) )
21adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  <->  A  <_  B ) )
3 rerpdivcl 9880 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
43adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  /  B
)  e.  RR )
5 1red 8161 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  1  e.  RR )
6 rpre 9856 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  C  e.  RR )
76adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  C  e.  RR )
8 letr 8229 . . . . . . . . . 10  |-  ( ( ( A  /  B
)  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( ( A  /  B )  <_  1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
94, 5, 7, 8syl3anc 1271 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( ( A  /  B )  <_ 
1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
109expd 258 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
112, 10sylbird 170 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  <_  B  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
1211com23 78 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( 1  <_  C  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) )
1312expimpd 363 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( C  e.  RR+  /\  1  <_  C
)  ->  ( A  <_  B  ->  ( A  /  B )  <_  C
) ) )
1413ex 115 . . . 4  |-  ( A  e.  RR  ->  ( B  e.  RR+  ->  (
( C  e.  RR+  /\  1  <_  C )  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) ) )
15143imp1 1244 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  B
)  <_  C )
16 simp1 1021 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  ->  A  e.  RR )
176adantr 276 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  C  e.  RR )
18 0lt1 8273 . . . . . . . . . 10  |-  0  <  1
19 0red 8147 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  0  e.  RR )
20 1red 8161 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  1  e.  RR )
21 ltletr 8236 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( 0  <  1  /\  1  <_  C )  ->  0  <  C
) )
2219, 20, 6, 21syl3anc 1271 . . . . . . . . . 10  |-  ( C  e.  RR+  ->  ( ( 0  <  1  /\  1  <_  C )  ->  0  <  C ) )
2318, 22mpani 430 . . . . . . . . 9  |-  ( C  e.  RR+  ->  ( 1  <_  C  ->  0  <  C ) )
2423imp 124 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  0  <  C )
2517, 24jca 306 . . . . . . 7  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  ( C  e.  RR  /\  0  <  C ) )
26253ad2ant3 1044 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( C  e.  RR  /\  0  <  C ) )
27 rpregt0 9863 . . . . . . 7  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <  B ) )
28273ad2ant2 1043 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( B  e.  RR  /\  0  <  B ) )
2916, 26, 283jca 1201 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
3029adantr 276 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
31 lediv23 9040 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3230, 31syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3315, 32mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  C
)  <_  B )
3433ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    < clt 8181    <_ cle 8182    / cdiv 8819   RR+crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-rp 9850
This theorem is referenced by:  gausslemma2dlem1a  15737
  Copyright terms: Public domain W3C validator