ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspun Unicode version

Theorem lspun 13648
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v  |-  V  =  ( Base `  W
)
lspss.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspun  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( T  u.  U ) )  =  ( N `  (
( N `  T
)  u.  ( N `
 U ) ) ) )

Proof of Theorem lspun
StepHypRef Expression
1 simp1 998 . . 3  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  W  e.  LMod )
2 simp2 999 . . . . . . 7  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  T  C_  V )
3 simp3 1000 . . . . . . 7  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  U  C_  V )
42, 3unssd 3323 . . . . . 6  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( T  u.  U )  C_  V )
5 ssun1 3310 . . . . . . 7  |-  T  C_  ( T  u.  U
)
65a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  T  C_  ( T  u.  U
) )
7 lspss.v . . . . . . 7  |-  V  =  ( Base `  W
)
8 lspss.n . . . . . . 7  |-  N  =  ( LSpan `  W )
97, 8lspss 13645 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( T  u.  U )  C_  V  /\  T  C_  ( T  u.  U
) )  ->  ( N `  T )  C_  ( N `  ( T  u.  U )
) )
101, 4, 6, 9syl3anc 1248 . . . . 5  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  T )  C_  ( N `  ( T  u.  U )
) )
11 ssun2 3311 . . . . . . 7  |-  U  C_  ( T  u.  U
)
1211a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  U  C_  ( T  u.  U
) )
137, 8lspss 13645 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( T  u.  U )  C_  V  /\  U  C_  ( T  u.  U
) )  ->  ( N `  U )  C_  ( N `  ( T  u.  U )
) )
141, 4, 12, 13syl3anc 1248 . . . . 5  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  U )  C_  ( N `  ( T  u.  U )
) )
1510, 14unssd 3323 . . . 4  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  (
( N `  T
)  u.  ( N `
 U ) ) 
C_  ( N `  ( T  u.  U
) ) )
167, 8lspssv 13644 . . . . 5  |-  ( ( W  e.  LMod  /\  ( T  u.  U )  C_  V )  ->  ( N `  ( T  u.  U ) )  C_  V )
171, 4, 16syl2anc 411 . . . 4  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( T  u.  U ) )  C_  V )
1815, 17sstrd 3177 . . 3  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  (
( N `  T
)  u.  ( N `
 U ) ) 
C_  V )
197, 8lspssid 13646 . . . . 5  |-  ( ( W  e.  LMod  /\  T  C_  V )  ->  T  C_  ( N `  T
) )
201, 2, 19syl2anc 411 . . . 4  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  T  C_  ( N `  T
) )
217, 8lspssid 13646 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  ( N `  U
) )
22 unss12 3319 . . . 4  |-  ( ( T  C_  ( N `  T )  /\  U  C_  ( N `  U
) )  ->  ( T  u.  U )  C_  ( ( N `  T )  u.  ( N `  U )
) )
2320, 21, 223imp3i2an 1184 . . 3  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( T  u.  U )  C_  ( ( N `  T )  u.  ( N `  U )
) )
247, 8lspss 13645 . . 3  |-  ( ( W  e.  LMod  /\  (
( N `  T
)  u.  ( N `
 U ) ) 
C_  V  /\  ( T  u.  U )  C_  ( ( N `  T )  u.  ( N `  U )
) )  ->  ( N `  ( T  u.  U ) )  C_  ( N `  ( ( N `  T )  u.  ( N `  U ) ) ) )
251, 18, 23, 24syl3anc 1248 . 2  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( T  u.  U ) )  C_  ( N `  ( ( N `  T )  u.  ( N `  U ) ) ) )
267, 8lspss 13645 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  ( T  u.  U ) )  C_  V  /\  ( ( N `
 T )  u.  ( N `  U
) )  C_  ( N `  ( T  u.  U ) ) )  ->  ( N `  ( ( N `  T )  u.  ( N `  U )
) )  C_  ( N `  ( N `  ( T  u.  U
) ) ) )
271, 17, 15, 26syl3anc 1248 . . 3  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( ( N `  T )  u.  ( N `  U
) ) )  C_  ( N `  ( N `
 ( T  u.  U ) ) ) )
287, 8lspidm 13647 . . . 4  |-  ( ( W  e.  LMod  /\  ( T  u.  U )  C_  V )  ->  ( N `  ( N `  ( T  u.  U
) ) )  =  ( N `  ( T  u.  U )
) )
291, 4, 28syl2anc 411 . . 3  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( N `  ( T  u.  U
) ) )  =  ( N `  ( T  u.  U )
) )
3027, 29sseqtrd 3205 . 2  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( ( N `  T )  u.  ( N `  U
) ) )  C_  ( N `  ( T  u.  U ) ) )
3125, 30eqssd 3184 1  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( T  u.  U ) )  =  ( N `  (
( N `  T
)  u.  ( N `
 U ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 979    = wceq 1363    e. wcel 2158    u. cun 3139    C_ wss 3141   ` cfv 5228   Basecbs 12476   LModclmod 13533   LSpanclspn 13632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-5 8995  df-6 8996  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-sca 12567  df-vsca 12568  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12909  df-minusg 12910  df-sbg 12911  df-mgp 13230  df-ur 13269  df-ring 13307  df-lmod 13535  df-lssm 13599  df-lsp 13633
This theorem is referenced by:  lspun0  13671
  Copyright terms: Public domain W3C validator