| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspun | Unicode version | ||
| Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v |
|
| lspss.n |
|
| Ref | Expression |
|---|---|
| lspun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . 3
| |
| 2 | simp2 1001 |
. . . . . . 7
| |
| 3 | simp3 1002 |
. . . . . . 7
| |
| 4 | 2, 3 | unssd 3350 |
. . . . . 6
|
| 5 | ssun1 3337 |
. . . . . . 7
| |
| 6 | 5 | a1i 9 |
. . . . . 6
|
| 7 | lspss.v |
. . . . . . 7
| |
| 8 | lspss.n |
. . . . . . 7
| |
| 9 | 7, 8 | lspss 14205 |
. . . . . 6
|
| 10 | 1, 4, 6, 9 | syl3anc 1250 |
. . . . 5
|
| 11 | ssun2 3338 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | 7, 8 | lspss 14205 |
. . . . . 6
|
| 14 | 1, 4, 12, 13 | syl3anc 1250 |
. . . . 5
|
| 15 | 10, 14 | unssd 3350 |
. . . 4
|
| 16 | 7, 8 | lspssv 14204 |
. . . . 5
|
| 17 | 1, 4, 16 | syl2anc 411 |
. . . 4
|
| 18 | 15, 17 | sstrd 3204 |
. . 3
|
| 19 | 7, 8 | lspssid 14206 |
. . . . 5
|
| 20 | 1, 2, 19 | syl2anc 411 |
. . . 4
|
| 21 | 7, 8 | lspssid 14206 |
. . . 4
|
| 22 | unss12 3346 |
. . . 4
| |
| 23 | 20, 21, 22 | 3imp3i2an 1186 |
. . 3
|
| 24 | 7, 8 | lspss 14205 |
. . 3
|
| 25 | 1, 18, 23, 24 | syl3anc 1250 |
. 2
|
| 26 | 7, 8 | lspss 14205 |
. . . 4
|
| 27 | 1, 17, 15, 26 | syl3anc 1250 |
. . 3
|
| 28 | 7, 8 | lspidm 14207 |
. . . 4
|
| 29 | 1, 4, 28 | syl2anc 411 |
. . 3
|
| 30 | 27, 29 | sseqtrd 3232 |
. 2
|
| 31 | 25, 30 | eqssd 3211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-mgp 13727 df-ur 13766 df-ring 13804 df-lmod 14095 df-lssm 14159 df-lsp 14193 |
| This theorem is referenced by: lspun0 14231 |
| Copyright terms: Public domain | W3C validator |