ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123i Unicode version

Theorem 3anim123i 1208
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
Hypotheses
Ref Expression
3anim123i.1  |-  ( ph  ->  ps )
3anim123i.2  |-  ( ch 
->  th )
3anim123i.3  |-  ( ta 
->  et )
Assertion
Ref Expression
3anim123i  |-  ( (
ph  /\  ch  /\  ta )  ->  ( ps  /\  th 
/\  et ) )

Proof of Theorem 3anim123i
StepHypRef Expression
1 3anim123i.1 . . 3  |-  ( ph  ->  ps )
213ad2ant1 1042 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  ps )
3 3anim123i.2 . . 3  |-  ( ch 
->  th )
433ad2ant2 1043 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  th )
5 3anim123i.3 . . 3  |-  ( ta 
->  et )
653ad2ant3 1044 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  et )
72, 4, 63jca 1201 1  |-  ( (
ph  /\  ch  /\  ta )  ->  ( ps  /\  th 
/\  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3anim1i  1209  3anim2i  1210  3anim3i  1211  syl3an  1313  syl3anl  1322  spc3egv  2895  spc3gv  2896  eloprabga  6091  le2tri3i  8255  fzmmmeqm  10254  elfz1b  10286  elfz0fzfz0  10322  elfzmlbp  10328  elfzo1  10391  flltdivnn0lt  10524  pfxeq  11228  swrdswrd  11237  swrdccat  11267  modmulconst  12334  nndvdslegcd  12486  lgsmulsqcoprm  15725
  Copyright terms: Public domain W3C validator