![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anim123i | Unicode version |
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anim123i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3anim123i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3anim123i.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3anim123i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anim123i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant1 1018 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 3anim123i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | 3ad2ant2 1019 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 3anim123i.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | 3ad2ant3 1020 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | 3jca 1177 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3anim1i 1185 3anim2i 1186 3anim3i 1187 syl3an 1280 syl3anl 1289 spc3egv 2831 spc3gv 2832 eloprabga 5965 le2tri3i 8069 fzmmmeqm 10061 elfz1b 10093 elfz0fzfz0 10129 elfzmlbp 10135 elfzo1 10193 flltdivnn0lt 10307 modmulconst 11833 nndvdslegcd 11969 lgsmulsqcoprm 14608 |
Copyright terms: Public domain | W3C validator |