ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123i Unicode version

Theorem 3anim123i 1174
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
Hypotheses
Ref Expression
3anim123i.1  |-  ( ph  ->  ps )
3anim123i.2  |-  ( ch 
->  th )
3anim123i.3  |-  ( ta 
->  et )
Assertion
Ref Expression
3anim123i  |-  ( (
ph  /\  ch  /\  ta )  ->  ( ps  /\  th 
/\  et ) )

Proof of Theorem 3anim123i
StepHypRef Expression
1 3anim123i.1 . . 3  |-  ( ph  ->  ps )
213ad2ant1 1008 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  ps )
3 3anim123i.2 . . 3  |-  ( ch 
->  th )
433ad2ant2 1009 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  th )
5 3anim123i.3 . . 3  |-  ( ta 
->  et )
653ad2ant3 1010 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  et )
72, 4, 63jca 1167 1  |-  ( (
ph  /\  ch  /\  ta )  ->  ( ps  /\  th 
/\  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  3anim1i  1175  3anim2i  1176  3anim3i  1177  syl3an  1270  syl3anl  1279  spc3egv  2818  spc3gv  2819  eloprabga  5929  le2tri3i  8007  fzmmmeqm  9993  elfz1b  10025  elfz0fzfz0  10061  elfzmlbp  10067  elfzo1  10125  flltdivnn0lt  10239  modmulconst  11763  nndvdslegcd  11898  lgsmulsqcoprm  13587
  Copyright terms: Public domain W3C validator