| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anim123i | Unicode version | ||
| Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anim123i.1 |
|
| 3anim123i.2 |
|
| 3anim123i.3 |
|
| Ref | Expression |
|---|---|
| 3anim123i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123i.1 |
. . 3
| |
| 2 | 1 | 3ad2ant1 1042 |
. 2
|
| 3 | 3anim123i.2 |
. . 3
| |
| 4 | 3 | 3ad2ant2 1043 |
. 2
|
| 5 | 3anim123i.3 |
. . 3
| |
| 6 | 5 | 3ad2ant3 1044 |
. 2
|
| 7 | 2, 4, 6 | 3jca 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anim1i 1209 3anim2i 1210 3anim3i 1211 syl3an 1313 syl3anl 1322 spc3egv 2895 spc3gv 2896 eloprabga 6091 le2tri3i 8255 fzmmmeqm 10254 elfz1b 10286 elfz0fzfz0 10322 elfzmlbp 10328 elfzo1 10391 flltdivnn0lt 10524 pfxeq 11228 swrdswrd 11237 swrdccat 11267 modmulconst 12334 nndvdslegcd 12486 lgsmulsqcoprm 15725 |
| Copyright terms: Public domain | W3C validator |