ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123i Unicode version

Theorem 3anim123i 1179
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
Hypotheses
Ref Expression
3anim123i.1  |-  ( ph  ->  ps )
3anim123i.2  |-  ( ch 
->  th )
3anim123i.3  |-  ( ta 
->  et )
Assertion
Ref Expression
3anim123i  |-  ( (
ph  /\  ch  /\  ta )  ->  ( ps  /\  th 
/\  et ) )

Proof of Theorem 3anim123i
StepHypRef Expression
1 3anim123i.1 . . 3  |-  ( ph  ->  ps )
213ad2ant1 1013 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  ps )
3 3anim123i.2 . . 3  |-  ( ch 
->  th )
433ad2ant2 1014 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  th )
5 3anim123i.3 . . 3  |-  ( ta 
->  et )
653ad2ant3 1015 . 2  |-  ( (
ph  /\  ch  /\  ta )  ->  et )
72, 4, 63jca 1172 1  |-  ( (
ph  /\  ch  /\  ta )  ->  ( ps  /\  th 
/\  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  3anim1i  1180  3anim2i  1181  3anim3i  1182  syl3an  1275  syl3anl  1284  spc3egv  2822  spc3gv  2823  eloprabga  5940  le2tri3i  8028  fzmmmeqm  10014  elfz1b  10046  elfz0fzfz0  10082  elfzmlbp  10088  elfzo1  10146  flltdivnn0lt  10260  modmulconst  11785  nndvdslegcd  11920  lgsmulsqcoprm  13741
  Copyright terms: Public domain W3C validator