ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl21anbrc Unicode version

Theorem syl21anbrc 1177
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.)
Hypotheses
Ref Expression
syl21anbrc.1  |-  ( ph  ->  ps )
syl21anbrc.2  |-  ( ph  ->  ch )
syl21anbrc.3  |-  ( ph  ->  th )
syl21anbrc.4  |-  ( ta  <->  ( ( ps  /\  ch )  /\  th ) )
Assertion
Ref Expression
syl21anbrc  |-  ( ph  ->  ta )

Proof of Theorem syl21anbrc
StepHypRef Expression
1 syl21anbrc.1 . . 3  |-  ( ph  ->  ps )
2 syl21anbrc.2 . . 3  |-  ( ph  ->  ch )
3 syl21anbrc.3 . . 3  |-  ( ph  ->  th )
41, 2, 3jca31 307 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  /\  th )
)
5 syl21anbrc.4 . 2  |-  ( ta  <->  ( ( ps  /\  ch )  /\  th ) )
64, 5sylibr 133 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  idmhm  12692
  Copyright terms: Public domain W3C validator