ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jao Unicode version

Theorem 3jao 1312
Description: Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3jao  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ph  \/  ch  \/  th )  ->  ps ) )

Proof of Theorem 3jao
StepHypRef Expression
1 df-3or 981 . 2  |-  ( (
ph  \/  ch  \/  th )  <->  ( ( ph  \/  ch )  \/  th ) )
2 jao 756 . . . 4  |-  ( (
ph  ->  ps )  -> 
( ( ch  ->  ps )  ->  ( ( ph  \/  ch )  ->  ps ) ) )
3 jao 756 . . . 4  |-  ( ( ( ph  \/  ch )  ->  ps )  -> 
( ( th  ->  ps )  ->  ( (
( ph  \/  ch )  \/  th )  ->  ps ) ) )
42, 3syl6 33 . . 3  |-  ( (
ph  ->  ps )  -> 
( ( ch  ->  ps )  ->  ( ( th  ->  ps )  -> 
( ( ( ph  \/  ch )  \/  th )  ->  ps ) ) ) )
543imp 1195 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ( ph  \/  ch )  \/  th )  ->  ps ) )
61, 5biimtrid 152 1  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ph  \/  ch  \/  th )  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    \/ w3o 979    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982
This theorem is referenced by:  3jaob  1313  3jaoi  1314  3jaod  1315
  Copyright terms: Public domain W3C validator