| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaod | Unicode version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaod.1 |
|
| 3jaod.2 |
|
| 3jaod.3 |
|
| Ref | Expression |
|---|---|
| 3jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 |
. 2
| |
| 2 | 3jaod.2 |
. 2
| |
| 3 | 3jaod.3 |
. 2
| |
| 4 | 3jao 1314 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 |
| This theorem is referenced by: 3jaodan 1319 3jaao 1321 issod 4384 nnawordex 6638 exmidontri2or 7389 addlocprlem 7683 nqprloc 7693 ltexprlemrl 7758 aptiprleml 7787 aptiprlemu 7788 elnn0z 9420 zaddcl 9447 zletric 9451 zlelttric 9452 zltnle 9453 zdceq 9483 zdcle 9484 zdclt 9485 nn01to3 9773 xposdif 10039 fzdcel 10197 qletric 10421 qlelttric 10422 qltnle 10423 qdceq 10424 qdclt 10425 frec2uzlt2d 10586 perfectlem2 15587 triap 16170 tridceq 16197 |
| Copyright terms: Public domain | W3C validator |