Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jaod | Unicode version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | |
3jaod.2 | |
3jaod.3 |
Ref | Expression |
---|---|
3jaod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 | |
2 | 3jaod.2 | . 2 | |
3 | 3jaod.3 | . 2 | |
4 | 3jao 1291 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3o 967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 |
This theorem is referenced by: 3jaodan 1296 3jaao 1298 issod 4297 nnawordex 6496 exmidontri2or 7199 addlocprlem 7476 nqprloc 7486 ltexprlemrl 7551 aptiprleml 7580 aptiprlemu 7581 elnn0z 9204 zaddcl 9231 zletric 9235 zlelttric 9236 zltnle 9237 zdceq 9266 zdcle 9267 zdclt 9268 nn01to3 9555 xposdif 9818 fzdcel 9975 qletric 10179 qlelttric 10180 qltnle 10181 qdceq 10182 frec2uzlt2d 10339 triap 13918 tridceq 13945 |
Copyright terms: Public domain | W3C validator |