| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaod | Unicode version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaod.1 |
|
| 3jaod.2 |
|
| 3jaod.3 |
|
| Ref | Expression |
|---|---|
| 3jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 |
. 2
| |
| 2 | 3jaod.2 |
. 2
| |
| 3 | 3jaod.3 |
. 2
| |
| 4 | 3jao 1314 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 |
| This theorem is referenced by: 3jaodan 1319 3jaao 1321 issod 4367 nnawordex 6617 exmidontri2or 7357 addlocprlem 7650 nqprloc 7660 ltexprlemrl 7725 aptiprleml 7754 aptiprlemu 7755 elnn0z 9387 zaddcl 9414 zletric 9418 zlelttric 9419 zltnle 9420 zdceq 9450 zdcle 9451 zdclt 9452 nn01to3 9740 xposdif 10006 fzdcel 10164 qletric 10386 qlelttric 10387 qltnle 10388 qdceq 10389 qdclt 10390 frec2uzlt2d 10551 perfectlem2 15505 triap 16005 tridceq 16032 |
| Copyright terms: Public domain | W3C validator |