| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3jaod | Unicode version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| 3jaod.1 | 
 | 
| 3jaod.2 | 
 | 
| 3jaod.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3jaod | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3jaod.1 | 
. 2
 | |
| 2 | 3jaod.2 | 
. 2
 | |
| 3 | 3jaod.3 | 
. 2
 | |
| 4 | 3jao 1312 | 
. 2
 | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 | 
| This theorem is referenced by: 3jaodan 1317 3jaao 1319 issod 4354 nnawordex 6587 exmidontri2or 7310 addlocprlem 7602 nqprloc 7612 ltexprlemrl 7677 aptiprleml 7706 aptiprlemu 7707 elnn0z 9339 zaddcl 9366 zletric 9370 zlelttric 9371 zltnle 9372 zdceq 9401 zdcle 9402 zdclt 9403 nn01to3 9691 xposdif 9957 fzdcel 10115 qletric 10331 qlelttric 10332 qltnle 10333 qdceq 10334 qdclt 10335 frec2uzlt2d 10496 perfectlem2 15236 triap 15673 tridceq 15700 | 
| Copyright terms: Public domain | W3C validator |