| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaod | Unicode version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaod.1 |
|
| 3jaod.2 |
|
| 3jaod.3 |
|
| Ref | Expression |
|---|---|
| 3jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 |
. 2
| |
| 2 | 3jaod.2 |
. 2
| |
| 3 | 3jaod.3 |
. 2
| |
| 4 | 3jao 1335 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 |
| This theorem is referenced by: 3jaodan 1340 3jaao 1342 issod 4410 nnawordex 6675 exmidontri2or 7428 addlocprlem 7722 nqprloc 7732 ltexprlemrl 7797 aptiprleml 7826 aptiprlemu 7827 elnn0z 9459 zaddcl 9486 zletric 9490 zlelttric 9491 zltnle 9492 zdceq 9522 zdcle 9523 zdclt 9524 nn01to3 9812 xposdif 10078 fzdcel 10236 qletric 10461 qlelttric 10462 qltnle 10463 qdceq 10464 qdclt 10465 frec2uzlt2d 10626 perfectlem2 15674 triap 16397 tridceq 16424 |
| Copyright terms: Public domain | W3C validator |