ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaob Unicode version

Theorem 3jaob 1238
Description: Disjunction of 3 antecedents. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
3jaob  |-  ( ( ( ph  \/  ch  \/  th )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps )  /\  ( th  ->  ps ) ) )

Proof of Theorem 3jaob
StepHypRef Expression
1 3mix1 1112 . . . 4  |-  ( ph  ->  ( ph  \/  ch  \/  th ) )
21imim1i 59 . . 3  |-  ( ( ( ph  \/  ch  \/  th )  ->  ps )  ->  ( ph  ->  ps ) )
3 3mix2 1113 . . . 4  |-  ( ch 
->  ( ph  \/  ch  \/  th ) )
43imim1i 59 . . 3  |-  ( ( ( ph  \/  ch  \/  th )  ->  ps )  ->  ( ch  ->  ps ) )
5 3mix3 1114 . . . 4  |-  ( th 
->  ( ph  \/  ch  \/  th ) )
65imim1i 59 . . 3  |-  ( ( ( ph  \/  ch  \/  th )  ->  ps )  ->  ( th  ->  ps ) )
72, 4, 63jca 1123 . 2  |-  ( ( ( ph  \/  ch  \/  th )  ->  ps )  ->  ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th  ->  ps )
) )
8 3jao 1237 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ph  \/  ch  \/  th )  ->  ps ) )
97, 8impbii 124 1  |-  ( ( ( ph  \/  ch  \/  th )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps )  /\  ( th  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    \/ w3o 923    /\ w3a 924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator