ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix3 Unicode version

Theorem 3mix3 1168
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3  |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1166 . 2  |-  ( ph  ->  ( ph  \/  ps  \/  ch ) )
2 3orrot 984 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )
31, 2sylib 122 1  |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-3or 979
This theorem is referenced by:  3mix3i  1171  3mix3d  1174  3jaob  1302  tpid3g  3709  funtpg  5269  exmidontriimlem3  7224  nn0le2is012  9337  nn01to3  9619  fztri3or  10041  qbtwnxr  10260  hashfiv01gt1  10764
  Copyright terms: Public domain W3C validator