ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3netr3d Unicode version

Theorem 3netr3d 2389
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
3netr3d.1  |-  ( ph  ->  A  =/=  B )
3netr3d.2  |-  ( ph  ->  A  =  C )
3netr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3netr3d  |-  ( ph  ->  C  =/=  D )

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.1 . 2  |-  ( ph  ->  A  =/=  B )
2 3netr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3netr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3neeq12d 2377 . 2  |-  ( ph  ->  ( A  =/=  B  <->  C  =/=  D ) )
51, 4mpbid 147 1  |-  ( ph  ->  C  =/=  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    =/= wne 2357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-4 1520  ax-17 1536  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-cleq 2180  df-ne 2358
This theorem is referenced by:  subrgnzr  13519
  Copyright terms: Public domain W3C validator