ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq12d Unicode version

Theorem neeq12d 2328
Description: Deduction for inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
neeq1d.1  |-  ( ph  ->  A  =  B )
neeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
neeq12d  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  D ) )

Proof of Theorem neeq12d
StepHypRef Expression
1 neeq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21neeq1d 2326 . 2  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
3 neeq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43neeq2d 2327 . 2  |-  ( ph  ->  ( B  =/=  C  <->  B  =/=  D ) )
52, 4bitrd 187 1  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    =/= wne 2308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-5 1423  ax-gen 1425  ax-4 1487  ax-17 1506  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-cleq 2132  df-ne 2309
This theorem is referenced by:  3netr3d  2340  3netr4d  2341  ennnfonelemim  11943  ctinfom  11947  apdiff  13292
  Copyright terms: Public domain W3C validator