ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrrid Unicode version

Theorem eqnetrrid 2367
Description: B chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
eqnetrrid.1  |-  B  =  A
eqnetrrid.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
eqnetrrid  |-  ( ph  ->  A  =/=  C )

Proof of Theorem eqnetrrid
StepHypRef Expression
1 eqnetrrid.2 . 2  |-  ( ph  ->  B  =/=  C )
2 eqnetrrid.1 . . 3  |-  B  =  A
32neeq1i 2351 . 2  |-  ( B  =/=  C  <->  A  =/=  C )
41, 3sylib 121 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator