ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3netr4g Unicode version

Theorem 3netr4g 2371
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
3netr4g.1  |-  ( ph  ->  A  =/=  B )
3netr4g.2  |-  C  =  A
3netr4g.3  |-  D  =  B
Assertion
Ref Expression
3netr4g  |-  ( ph  ->  C  =/=  D )

Proof of Theorem 3netr4g
StepHypRef Expression
1 3netr4g.1 . 2  |-  ( ph  ->  A  =/=  B )
2 3netr4g.2 . . 3  |-  C  =  A
3 3netr4g.3 . . 3  |-  D  =  B
42, 3neeq12i 2353 . 2  |-  ( C  =/=  D  <->  A  =/=  B )
51, 4sylibr 133 1  |-  ( ph  ->  C  =/=  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator