ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq12i Unicode version

Theorem neeq12i 2381
Description: Inference for inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
neeq1i.1  |-  A  =  B
neeq12i.2  |-  C  =  D
Assertion
Ref Expression
neeq12i  |-  ( A  =/=  C  <->  B  =/=  D )

Proof of Theorem neeq12i
StepHypRef Expression
1 neeq12i.2 . . 3  |-  C  =  D
21neeq2i 2380 . 2  |-  ( A  =/=  C  <->  A  =/=  D )
3 neeq1i.1 . . 3  |-  A  =  B
43neeq1i 2379 . 2  |-  ( A  =/=  D  <->  B  =/=  D )
52, 4bitri 184 1  |-  ( A  =/=  C  <->  B  =/=  D )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    =/= wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-ne 2365
This theorem is referenced by:  3netr3g  2398  3netr4g  2399  starvndxnbasendx  12762  starvndxnplusgndx  12763  starvndxnmulrndx  12764  scandxnbasendx  12774  scandxnplusgndx  12775  scandxnmulrndx  12776  vscandxnbasendx  12779  vscandxnplusgndx  12780  vscandxnmulrndx  12781  vscandxnscandx  12782  ipndxnbasendx  12792  ipndxnplusgndx  12793  ipndxnmulrndx  12794  slotsdifipndx  12795  tsetndxnplusgndx  12812  tsetndxnmulrndx  12813  tsetndxnstarvndx  12814  slotstnscsi  12815  plendxnplusgndx  12826  plendxnmulrndx  12827  plendxnscandx  12828  plendxnvscandx  12829  slotsdifplendx  12830  dsndxnplusgndx  12837  dsndxnmulrndx  12838  slotsdnscsi  12839  dsndxntsetndx  12840  slotsdifdsndx  12841  unifndxntsetndx  12847  slotsdifunifndx  12848  setsmsbasg  14658  setsmsdsg  14659
  Copyright terms: Public domain W3C validator