ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq12i Unicode version

Theorem neeq12i 2417
Description: Inference for inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
neeq1i.1  |-  A  =  B
neeq12i.2  |-  C  =  D
Assertion
Ref Expression
neeq12i  |-  ( A  =/=  C  <->  B  =/=  D )

Proof of Theorem neeq12i
StepHypRef Expression
1 neeq12i.2 . . 3  |-  C  =  D
21neeq2i 2416 . 2  |-  ( A  =/=  C  <->  A  =/=  D )
3 neeq1i.1 . . 3  |-  A  =  B
43neeq1i 2415 . 2  |-  ( A  =/=  D  <->  B  =/=  D )
52, 4bitri 184 1  |-  ( A  =/=  C  <->  B  =/=  D )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    =/= wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-ne 2401
This theorem is referenced by:  3netr3g  2434  3netr4g  2435  starvndxnbasendx  13175  starvndxnplusgndx  13176  starvndxnmulrndx  13177  scandxnbasendx  13187  scandxnplusgndx  13188  scandxnmulrndx  13189  vscandxnbasendx  13192  vscandxnplusgndx  13193  vscandxnmulrndx  13194  vscandxnscandx  13195  ipndxnbasendx  13205  ipndxnplusgndx  13206  ipndxnmulrndx  13207  slotsdifipndx  13208  tsetndxnplusgndx  13225  tsetndxnmulrndx  13226  tsetndxnstarvndx  13227  slotstnscsi  13228  plendxnplusgndx  13239  plendxnmulrndx  13240  plendxnscandx  13241  plendxnvscandx  13242  slotsdifplendx  13243  basendxnocndx  13246  plendxnocndx  13247  dsndxnplusgndx  13254  dsndxnmulrndx  13255  slotsdnscsi  13256  dsndxntsetndx  13257  slotsdifdsndx  13258  unifndxntsetndx  13264  slotsdifunifndx  13265  setsmsbasg  15153  setsmsdsg  15154
  Copyright terms: Public domain W3C validator