Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-exp | Unicode version |
Description: Example for df-exp 10476. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8940 | . . . 4 | |
2 | 1 | oveq1i 5863 | . . 3 |
3 | 4cn 8956 | . . . . 5 | |
4 | binom21 10588 | . . . . 5 | |
5 | 3, 4 | ax-mp 5 | . . . 4 |
6 | 2nn0 9152 | . . . . 5 | |
7 | 4nn0 9154 | . . . . 5 | |
8 | 4p1e5 9014 | . . . . 5 | |
9 | sq4e2t8 10573 | . . . . . . . 8 | |
10 | 8cn 8964 | . . . . . . . . 9 | |
11 | 2cn 8949 | . . . . . . . . 9 | |
12 | 8t2e16 9457 | . . . . . . . . 9 ; | |
13 | 10, 11, 12 | mulcomli 7927 | . . . . . . . 8 ; |
14 | 9, 13 | eqtri 2191 | . . . . . . 7 ; |
15 | 4t2e8 9036 | . . . . . . . 8 | |
16 | 3, 11, 15 | mulcomli 7927 | . . . . . . 7 |
17 | 14, 16 | oveq12i 5865 | . . . . . 6 ; |
18 | 1nn0 9151 | . . . . . . 7 | |
19 | 6nn0 9156 | . . . . . . 7 | |
20 | 8nn0 9158 | . . . . . . 7 | |
21 | eqid 2170 | . . . . . . 7 ; ; | |
22 | 1p1e2 8995 | . . . . . . 7 | |
23 | 6cn 8960 | . . . . . . . 8 | |
24 | 8p6e14 9426 | . . . . . . . 8 ; | |
25 | 10, 23, 24 | addcomli 8064 | . . . . . . 7 ; |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9403 | . . . . . 6 ; ; |
27 | 17, 26 | eqtri 2191 | . . . . 5 ; |
28 | 6, 7, 8, 27 | decsuc 9373 | . . . 4 ; |
29 | 5, 28 | eqtri 2191 | . . 3 ; |
30 | 2, 29 | eqtri 2191 | . 2 ; |
31 | 3cn 8953 | . . . . 5 | |
32 | 31 | negcli 8187 | . . . 4 |
33 | 3ap0 8974 | . . . . 5 # | |
34 | negap0 8549 | . . . . . 6 # # | |
35 | 31, 34 | ax-mp 5 | . . . . 5 # # |
36 | 33, 35 | mpbi 144 | . . . 4 # |
37 | expnegap0 10484 | . . . 4 # | |
38 | 32, 36, 6, 37 | mp3an 1332 | . . 3 |
39 | sqneg 10535 | . . . . . 6 | |
40 | 31, 39 | ax-mp 5 | . . . . 5 |
41 | sq3 10572 | . . . . 5 | |
42 | 40, 41 | eqtri 2191 | . . . 4 |
43 | 42 | oveq2i 5864 | . . 3 |
44 | 38, 43 | eqtri 2191 | . 2 |
45 | 30, 44 | pm3.2i 270 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 cneg 8091 # cap 8500 cdiv 8589 c2 8929 c3 8930 c4 8931 c5 8932 c6 8933 c8 8935 c9 8936 cn0 9135 ;cdc 9343 cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-dec 9344 df-uz 9488 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |