![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-exp | Unicode version |
Description: Example for df-exp 9955. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8484 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq1i 5662 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 4cn 8500 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | binom21 10066 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | ax-mp 7 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2nn0 8690 |
. . . . 5
![]() ![]() ![]() ![]() | |
7 | 4nn0 8692 |
. . . . 5
![]() ![]() ![]() ![]() | |
8 | 4p1e5 8552 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | sq4e2t8 10052 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8cn 8508 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
11 | 2cn 8493 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
12 | 8t2e16 8991 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 10, 11, 12 | mulcomli 7495 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 9, 13 | eqtri 2108 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 4t2e8 8574 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 3, 11, 15 | mulcomli 7495 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | oveq12i 5664 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 1nn0 8689 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
19 | 6nn0 8694 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
20 | 8nn0 8696 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
21 | eqid 2088 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 1p1e2 8539 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 6cn 8504 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
24 | 8p6e14 8960 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | 10, 23, 24 | addcomli 7627 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 8937 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 17, 26 | eqtri 2108 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 6, 7, 8, 27 | decsuc 8907 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 5, 28 | eqtri 2108 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 2, 29 | eqtri 2108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 3cn 8497 |
. . . . 5
![]() ![]() ![]() ![]() | |
32 | 31 | negcli 7750 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
33 | 3ap0 8518 |
. . . . 5
![]() ![]() ![]() | |
34 | negap0 8106 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
35 | 31, 34 | ax-mp 7 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 33, 35 | mpbi 143 |
. . . 4
![]() ![]() ![]() ![]() |
37 | expnegap0 9963 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | 32, 36, 6, 37 | mp3an 1273 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | sqneg 10014 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
40 | 31, 39 | ax-mp 7 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | sq3 10051 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
42 | 40, 41 | eqtri 2108 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 42 | oveq2i 5663 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | 38, 43 | eqtri 2108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 30, 44 | pm3.2i 266 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-mulrcl 7444 ax-addcom 7445 ax-mulcom 7446 ax-addass 7447 ax-mulass 7448 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-1rid 7452 ax-0id 7453 ax-rnegex 7454 ax-precex 7455 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-apti 7460 ax-pre-ltadd 7461 ax-pre-mulgt0 7462 ax-pre-mulext 7463 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-po 4123 df-iso 4124 df-iord 4193 df-on 4195 df-ilim 4196 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-frec 6156 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-reap 8052 df-ap 8059 df-div 8140 df-inn 8423 df-2 8481 df-3 8482 df-4 8483 df-5 8484 df-6 8485 df-7 8486 df-8 8487 df-9 8488 df-n0 8674 df-z 8751 df-dec 8878 df-uz 9020 df-iseq 9853 df-seq3 9854 df-exp 9955 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |