Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-exp | Unicode version |
Description: Example for df-exp 10429. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8901 | . . . 4 | |
2 | 1 | oveq1i 5837 | . . 3 |
3 | 4cn 8917 | . . . . 5 | |
4 | binom21 10540 | . . . . 5 | |
5 | 3, 4 | ax-mp 5 | . . . 4 |
6 | 2nn0 9113 | . . . . 5 | |
7 | 4nn0 9115 | . . . . 5 | |
8 | 4p1e5 8975 | . . . . 5 | |
9 | sq4e2t8 10526 | . . . . . . . 8 | |
10 | 8cn 8925 | . . . . . . . . 9 | |
11 | 2cn 8910 | . . . . . . . . 9 | |
12 | 8t2e16 9415 | . . . . . . . . 9 ; | |
13 | 10, 11, 12 | mulcomli 7888 | . . . . . . . 8 ; |
14 | 9, 13 | eqtri 2178 | . . . . . . 7 ; |
15 | 4t2e8 8997 | . . . . . . . 8 | |
16 | 3, 11, 15 | mulcomli 7888 | . . . . . . 7 |
17 | 14, 16 | oveq12i 5839 | . . . . . 6 ; |
18 | 1nn0 9112 | . . . . . . 7 | |
19 | 6nn0 9117 | . . . . . . 7 | |
20 | 8nn0 9119 | . . . . . . 7 | |
21 | eqid 2157 | . . . . . . 7 ; ; | |
22 | 1p1e2 8956 | . . . . . . 7 | |
23 | 6cn 8921 | . . . . . . . 8 | |
24 | 8p6e14 9384 | . . . . . . . 8 ; | |
25 | 10, 23, 24 | addcomli 8025 | . . . . . . 7 ; |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9361 | . . . . . 6 ; ; |
27 | 17, 26 | eqtri 2178 | . . . . 5 ; |
28 | 6, 7, 8, 27 | decsuc 9331 | . . . 4 ; |
29 | 5, 28 | eqtri 2178 | . . 3 ; |
30 | 2, 29 | eqtri 2178 | . 2 ; |
31 | 3cn 8914 | . . . . 5 | |
32 | 31 | negcli 8148 | . . . 4 |
33 | 3ap0 8935 | . . . . 5 # | |
34 | negap0 8510 | . . . . . 6 # # | |
35 | 31, 34 | ax-mp 5 | . . . . 5 # # |
36 | 33, 35 | mpbi 144 | . . . 4 # |
37 | expnegap0 10437 | . . . 4 # | |
38 | 32, 36, 6, 37 | mp3an 1319 | . . 3 |
39 | sqneg 10488 | . . . . . 6 | |
40 | 31, 39 | ax-mp 5 | . . . . 5 |
41 | sq3 10525 | . . . . 5 | |
42 | 40, 41 | eqtri 2178 | . . . 4 |
43 | 42 | oveq2i 5838 | . . 3 |
44 | 38, 43 | eqtri 2178 | . 2 |
45 | 30, 44 | pm3.2i 270 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wcel 2128 class class class wbr 3967 (class class class)co 5827 cc 7733 cc0 7735 c1 7736 caddc 7738 cmul 7740 cneg 8052 # cap 8461 cdiv 8550 c2 8890 c3 8891 c4 8892 c5 8893 c6 8894 c8 8896 c9 8897 cn0 9096 ;cdc 9301 cexp 10428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4082 ax-sep 4085 ax-nul 4093 ax-pow 4138 ax-pr 4172 ax-un 4396 ax-setind 4499 ax-iinf 4550 ax-cnex 7826 ax-resscn 7827 ax-1cn 7828 ax-1re 7829 ax-icn 7830 ax-addcl 7831 ax-addrcl 7832 ax-mulcl 7833 ax-mulrcl 7834 ax-addcom 7835 ax-mulcom 7836 ax-addass 7837 ax-mulass 7838 ax-distr 7839 ax-i2m1 7840 ax-0lt1 7841 ax-1rid 7842 ax-0id 7843 ax-rnegex 7844 ax-precex 7845 ax-cnre 7846 ax-pre-ltirr 7847 ax-pre-ltwlin 7848 ax-pre-lttrn 7849 ax-pre-apti 7850 ax-pre-ltadd 7851 ax-pre-mulgt0 7852 ax-pre-mulext 7853 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4029 df-mpt 4030 df-tr 4066 df-id 4256 df-po 4259 df-iso 4260 df-iord 4329 df-on 4331 df-ilim 4332 df-suc 4334 df-iom 4553 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-rn 4600 df-res 4601 df-ima 4602 df-iota 5138 df-fun 5175 df-fn 5176 df-f 5177 df-f1 5178 df-fo 5179 df-f1o 5180 df-fv 5181 df-riota 5783 df-ov 5830 df-oprab 5831 df-mpo 5832 df-1st 6091 df-2nd 6092 df-recs 6255 df-frec 6341 df-pnf 7917 df-mnf 7918 df-xr 7919 df-ltxr 7920 df-le 7921 df-sub 8053 df-neg 8054 df-reap 8455 df-ap 8462 df-div 8551 df-inn 8840 df-2 8898 df-3 8899 df-4 8900 df-5 8901 df-6 8902 df-7 8903 df-8 8904 df-9 8905 df-n0 9097 df-z 9174 df-dec 9302 df-uz 9446 df-seqfrec 10355 df-exp 10429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |