ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aaan Unicode version

Theorem aaan 1585
Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
Hypotheses
Ref Expression
aaan.1  |-  F/ y
ph
aaan.2  |-  F/ x ps
Assertion
Ref Expression
aaan  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x ph  /\  A. y ps ) )

Proof of Theorem aaan
StepHypRef Expression
1 aaan.1 . . . 4  |-  F/ y
ph
2119.28 1561 . . 3  |-  ( A. y ( ph  /\  ps )  <->  ( ph  /\  A. y ps ) )
32albii 1468 . 2  |-  ( A. x A. y ( ph  /\ 
ps )  <->  A. x
( ph  /\  A. y ps ) )
4 aaan.2 . . . 4  |-  F/ x ps
54nfal 1574 . . 3  |-  F/ x A. y ps
6519.27 1559 . 2  |-  ( A. x ( ph  /\  A. y ps )  <->  ( A. x ph  /\  A. y ps ) )
73, 6bitri 184 1  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x ph  /\  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1351   F/wnf 1458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-4 1508
This theorem depends on definitions:  df-bi 117  df-nf 1459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator