ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aaan Unicode version

Theorem aaan 1575
Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
Hypotheses
Ref Expression
aaan.1  |-  F/ y
ph
aaan.2  |-  F/ x ps
Assertion
Ref Expression
aaan  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x ph  /\  A. y ps ) )

Proof of Theorem aaan
StepHypRef Expression
1 aaan.1 . . . 4  |-  F/ y
ph
2119.28 1551 . . 3  |-  ( A. y ( ph  /\  ps )  <->  ( ph  /\  A. y ps ) )
32albii 1458 . 2  |-  ( A. x A. y ( ph  /\ 
ps )  <->  A. x
( ph  /\  A. y ps ) )
4 aaan.2 . . . 4  |-  F/ x ps
54nfal 1564 . . 3  |-  F/ x A. y ps
6519.27 1549 . 2  |-  ( A. x ( ph  /\  A. y ps )  <->  ( A. x ph  /\  A. y ps ) )
73, 6bitri 183 1  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x ph  /\  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator