ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbid Unicode version

Theorem nfbid 1576
Description: If in a context  x is not free in  ps and  ch, then it is not free in  ( ps  <->  ch ). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
Hypotheses
Ref Expression
nfbid.1  |-  ( ph  ->  F/ x ps )
nfbid.2  |-  ( ph  ->  F/ x ch )
Assertion
Ref Expression
nfbid  |-  ( ph  ->  F/ x ( ps  <->  ch ) )

Proof of Theorem nfbid
StepHypRef Expression
1 dfbi2 386 . 2  |-  ( ( ps  <->  ch )  <->  ( ( ps  ->  ch )  /\  ( ch  ->  ps )
) )
2 nfbid.1 . . . 4  |-  ( ph  ->  F/ x ps )
3 nfbid.2 . . . 4  |-  ( ph  ->  F/ x ch )
42, 3nfimd 1573 . . 3  |-  ( ph  ->  F/ x ( ps 
->  ch ) )
53, 2nfimd 1573 . . 3  |-  ( ph  ->  F/ x ( ch 
->  ps ) )
64, 5nfand 1556 . 2  |-  ( ph  ->  F/ x ( ( ps  ->  ch )  /\  ( ch  ->  ps ) ) )
71, 6nfxfrd 1463 1  |-  ( ph  ->  F/ x ( ps  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfbi  1577  nfeudv  2029  nfeqd  2323  nfiotadw  5156  iota2df  5177  bdsepnft  13769
  Copyright terms: Public domain W3C validator