| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aaan | GIF version | ||
| Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| aaan.1 | ⊢ Ⅎ𝑦𝜑 |
| aaan.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| aaan | ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aaan.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | 19.28 1577 | . . 3 ⊢ (∀𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓)) |
| 3 | 2 | albii 1484 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓)) |
| 4 | aaan.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 4 | nfal 1590 | . . 3 ⊢ Ⅎ𝑥∀𝑦𝜓 |
| 6 | 5 | 19.27 1575 | . 2 ⊢ (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| 7 | 3, 6 | bitri 184 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |