ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aaan GIF version

Theorem aaan 1575
Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
Hypotheses
Ref Expression
aaan.1 𝑦𝜑
aaan.2 𝑥𝜓
Assertion
Ref Expression
aaan (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))

Proof of Theorem aaan
StepHypRef Expression
1 aaan.1 . . . 4 𝑦𝜑
2119.28 1551 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓))
32albii 1458 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓))
4 aaan.2 . . . 4 𝑥𝜓
54nfal 1564 . . 3 𝑥𝑦𝜓
6519.27 1549 . 2 (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
73, 6bitri 183 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator