ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbae Unicode version

Theorem hbae 1711
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
Assertion
Ref Expression
hbae  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )

Proof of Theorem hbae
StepHypRef Expression
1 ax12or 1501 . . . 4  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
2 ax10o 1708 . . . . . 6  |-  ( A. x  x  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
32alequcoms 1509 . . . . 5  |-  ( A. z  z  =  x  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
4 ax10o 1708 . . . . . . . . 9  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
54pm2.43i 49 . . . . . . . 8  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
6 ax10o 1708 . . . . . . . 8  |-  ( A. y  y  =  z  ->  ( A. y  x  =  y  ->  A. z  x  =  y )
)
75, 6syl5 32 . . . . . . 7  |-  ( A. y  y  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
87alequcoms 1509 . . . . . 6  |-  ( A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
9 ax-4 1503 . . . . . . . 8  |-  ( A. x  x  =  y  ->  x  =  y )
109imim1i 60 . . . . . . 7  |-  ( ( x  =  y  ->  A. z  x  =  y )  ->  ( A. x  x  =  y  ->  A. z  x  =  y ) )
1110sps 1530 . . . . . 6  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
128, 11jaoi 711 . . . . 5  |-  ( ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) )  -> 
( A. x  x  =  y  ->  A. z  x  =  y )
)
133, 12jaoi 711 . . . 4  |-  ( ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )  ->  ( A. x  x  =  y  ->  A. z  x  =  y ) )
141, 13ax-mp 5 . . 3  |-  ( A. x  x  =  y  ->  A. z  x  =  y )
1514a5i 1536 . 2  |-  ( A. x  x  =  y  ->  A. x A. z  x  =  y )
16 ax-7 1441 . 2  |-  ( A. x A. z  x  =  y  ->  A. z A. x  x  =  y )
1715, 16syl 14 1  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703   A.wal 1346    = wceq 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfae  1712  hbaes  1713  hbnae  1714  dral1  1723  dral2  1724  drex2  1725  drex1  1791  aev  1805  sbcomxyyz  1965  exists1  2115
  Copyright terms: Public domain W3C validator