Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequi | Unicode version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) (Proof modified by Jim Kingdon, 1-Feb-2018.) |
Ref | Expression |
---|---|
sbequi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb2or 1825 | . . . 4 | |
2 | nfr 1506 | . . . . . 6 | |
3 | equvini 1746 | . . . . . . 7 | |
4 | stdpc7 1758 | . . . . . . . . 9 | |
5 | sbequ1 1756 | . . . . . . . . 9 | |
6 | 4, 5 | sylan9 407 | . . . . . . . 8 |
7 | 6 | eximi 1588 | . . . . . . 7 |
8 | 19.35-1 1612 | . . . . . . 7 | |
9 | 3, 7, 8 | 3syl 17 | . . . . . 6 |
10 | 2, 9 | syl9 72 | . . . . 5 |
11 | 10 | orim2i 751 | . . . 4 |
12 | 1, 11 | ax-mp 5 | . . 3 |
13 | nfsb2or 1825 | . . . . 5 | |
14 | 19.9t 1630 | . . . . . . 7 | |
15 | 14 | biimpd 143 | . . . . . 6 |
16 | 15 | orim2i 751 | . . . . 5 |
17 | 13, 16 | ax-mp 5 | . . . 4 |
18 | ax-1 6 | . . . . 5 | |
19 | 18 | orim2i 751 | . . . 4 |
20 | 17, 19 | ax-mp 5 | . . 3 |
21 | 12, 20 | sbequilem 1826 | . 2 |
22 | sbequ2 1757 | . . . . . . 7 | |
23 | 22 | sps 1525 | . . . . . 6 |
24 | 23 | adantr 274 | . . . . 5 |
25 | sbequ1 1756 | . . . . . 6 | |
26 | drsb1 1787 | . . . . . . . 8 | |
27 | 26 | biimpd 143 | . . . . . . 7 |
28 | 27 | alequcoms 1504 | . . . . . 6 |
29 | 25, 28 | sylan9r 408 | . . . . 5 |
30 | 24, 29 | syld 45 | . . . 4 |
31 | 30 | ex 114 | . . 3 |
32 | drsb1 1787 | . . . . . . . . 9 | |
33 | 32 | biimpd 143 | . . . . . . . 8 |
34 | stdpc7 1758 | . . . . . . . 8 | |
35 | 33, 34 | sylan9 407 | . . . . . . 7 |
36 | 5 | sps 1525 | . . . . . . . 8 |
37 | 36 | adantr 274 | . . . . . . 7 |
38 | 35, 37 | syld 45 | . . . . . 6 |
39 | 38 | ex 114 | . . . . 5 |
40 | 39 | orim1i 750 | . . . 4 |
41 | pm1.2 746 | . . . 4 | |
42 | 40, 41 | syl 14 | . . 3 |
43 | 31, 42 | jaoi 706 | . 2 |
44 | 21, 43 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wal 1341 wnf 1448 wex 1480 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: sbequ 1828 |
Copyright terms: Public domain | W3C validator |