| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbequi | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) (Proof modified by Jim Kingdon, 1-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| sbequi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfsb2or 1851 | 
. . . 4
 | |
| 2 | nfr 1532 | 
. . . . . 6
 | |
| 3 | equvini 1772 | 
. . . . . . 7
 | |
| 4 | stdpc7 1784 | 
. . . . . . . . 9
 | |
| 5 | sbequ1 1782 | 
. . . . . . . . 9
 | |
| 6 | 4, 5 | sylan9 409 | 
. . . . . . . 8
 | 
| 7 | 6 | eximi 1614 | 
. . . . . . 7
 | 
| 8 | 19.35-1 1638 | 
. . . . . . 7
 | |
| 9 | 3, 7, 8 | 3syl 17 | 
. . . . . 6
 | 
| 10 | 2, 9 | syl9 72 | 
. . . . 5
 | 
| 11 | 10 | orim2i 762 | 
. . . 4
 | 
| 12 | 1, 11 | ax-mp 5 | 
. . 3
 | 
| 13 | nfsb2or 1851 | 
. . . . 5
 | |
| 14 | 19.9t 1656 | 
. . . . . . 7
 | |
| 15 | 14 | biimpd 144 | 
. . . . . 6
 | 
| 16 | 15 | orim2i 762 | 
. . . . 5
 | 
| 17 | 13, 16 | ax-mp 5 | 
. . . 4
 | 
| 18 | ax-1 6 | 
. . . . 5
 | |
| 19 | 18 | orim2i 762 | 
. . . 4
 | 
| 20 | 17, 19 | ax-mp 5 | 
. . 3
 | 
| 21 | 12, 20 | sbequilem 1852 | 
. 2
 | 
| 22 | sbequ2 1783 | 
. . . . . . 7
 | |
| 23 | 22 | sps 1551 | 
. . . . . 6
 | 
| 24 | 23 | adantr 276 | 
. . . . 5
 | 
| 25 | sbequ1 1782 | 
. . . . . 6
 | |
| 26 | drsb1 1813 | 
. . . . . . . 8
 | |
| 27 | 26 | biimpd 144 | 
. . . . . . 7
 | 
| 28 | 27 | alequcoms 1530 | 
. . . . . 6
 | 
| 29 | 25, 28 | sylan9r 410 | 
. . . . 5
 | 
| 30 | 24, 29 | syld 45 | 
. . . 4
 | 
| 31 | 30 | ex 115 | 
. . 3
 | 
| 32 | drsb1 1813 | 
. . . . . . . . 9
 | |
| 33 | 32 | biimpd 144 | 
. . . . . . . 8
 | 
| 34 | stdpc7 1784 | 
. . . . . . . 8
 | |
| 35 | 33, 34 | sylan9 409 | 
. . . . . . 7
 | 
| 36 | 5 | sps 1551 | 
. . . . . . . 8
 | 
| 37 | 36 | adantr 276 | 
. . . . . . 7
 | 
| 38 | 35, 37 | syld 45 | 
. . . . . 6
 | 
| 39 | 38 | ex 115 | 
. . . . 5
 | 
| 40 | 39 | orim1i 761 | 
. . . 4
 | 
| 41 | pm1.2 757 | 
. . . 4
 | |
| 42 | 40, 41 | syl 14 | 
. . 3
 | 
| 43 | 31, 42 | jaoi 717 | 
. 2
 | 
| 44 | 21, 43 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbequ 1854 | 
| Copyright terms: Public domain | W3C validator |