| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > drex1 | Unicode version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| drex1.1 | 
 | 
| Ref | Expression | 
|---|---|
| drex1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbae 1732 | 
. . . 4
 | |
| 2 | drex1.1 | 
. . . . 5
 | |
| 3 | ax-4 1524 | 
. . . . . 6
 | |
| 4 | 3 | biantrurd 305 | 
. . . . 5
 | 
| 5 | 2, 4 | bitr2d 189 | 
. . . 4
 | 
| 6 | 1, 5 | exbidh 1628 | 
. . 3
 | 
| 7 | ax11e 1810 | 
. . . 4
 | |
| 8 | 7 | sps 1551 | 
. . 3
 | 
| 9 | 6, 8 | sylbird 170 | 
. 2
 | 
| 10 | hbae 1732 | 
. . . 4
 | |
| 11 | equcomi 1718 | 
. . . . . . 7
 | |
| 12 | 11 | sps 1551 | 
. . . . . 6
 | 
| 13 | 12 | biantrurd 305 | 
. . . . 5
 | 
| 14 | 13, 2 | bitr3d 190 | 
. . . 4
 | 
| 15 | 10, 14 | exbidh 1628 | 
. . 3
 | 
| 16 | ax11e 1810 | 
. . . . 5
 | |
| 17 | 16 | sps 1551 | 
. . . 4
 | 
| 18 | 17 | alequcoms 1530 | 
. . 3
 | 
| 19 | 15, 18 | sylbird 170 | 
. 2
 | 
| 20 | 9, 19 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: drsb1 1813 exdistrfor 1814 copsexg 4277 | 
| Copyright terms: Public domain | W3C validator |