Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralcomf | Unicode version |
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcomf.1 | |
ralcomf.2 |
Ref | Expression |
---|---|
ralcomf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomsimp 1428 | . . . 4 | |
2 | 1 | 2albii 1459 | . . 3 |
3 | alcom 1466 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | ralcomf.1 | . . 3 | |
6 | 5 | r2alf 2483 | . 2 |
7 | ralcomf.2 | . . 3 | |
8 | 7 | r2alf 2483 | . 2 |
9 | 4, 6, 8 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wcel 2136 wnfc 2295 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: ralcom 2629 ssiinf 3915 |
Copyright terms: Public domain | W3C validator |