ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcomf Unicode version

Theorem ralcomf 2658
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1  |-  F/_ y A
ralcomf.2  |-  F/_ x B
Assertion
Ref Expression
ralcomf  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem ralcomf
StepHypRef Expression
1 ancomsimp 1451 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ph )  <->  ( (
y  e.  B  /\  x  e.  A )  ->  ph ) )
212albii 1485 . . 3  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. x A. y ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
3 alcom 1492 . . 3  |-  ( A. x A. y ( ( y  e.  B  /\  x  e.  A )  ->  ph )  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
42, 3bitri 184 . 2  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
5 ralcomf.1 . . 3  |-  F/_ y A
65r2alf 2514 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
7 ralcomf.2 . . 3  |-  F/_ x B
87r2alf 2514 . 2  |-  ( A. y  e.  B  A. x  e.  A  ph  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
94, 6, 83bitr4i 212 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    e. wcel 2167   F/_wnfc 2326   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  ralcom  2660  ssiinf  3966
  Copyright terms: Public domain W3C validator