ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcomf Unicode version

Theorem ralcomf 2618
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1  |-  F/_ y A
ralcomf.2  |-  F/_ x B
Assertion
Ref Expression
ralcomf  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem ralcomf
StepHypRef Expression
1 ancomsimp 1420 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ph )  <->  ( (
y  e.  B  /\  x  e.  A )  ->  ph ) )
212albii 1451 . . 3  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. x A. y ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
3 alcom 1458 . . 3  |-  ( A. x A. y ( ( y  e.  B  /\  x  e.  A )  ->  ph )  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
42, 3bitri 183 . 2  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
5 ralcomf.1 . . 3  |-  F/_ y A
65r2alf 2474 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
7 ralcomf.2 . . 3  |-  F/_ x B
87r2alf 2474 . 2  |-  ( A. y  e.  B  A. x  e.  A  ph  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
94, 6, 83bitr4i 211 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333    e. wcel 2128   F/_wnfc 2286   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440
This theorem is referenced by:  ralcom  2620  ssiinf  3899
  Copyright terms: Public domain W3C validator