ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpdfbidc Unicode version

Theorem ifpdfbidc 991
Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020.) (Proof shortened by Wolf Lammen, 30-Apr-2024.)
Assertion
Ref Expression
ifpdfbidc  |-  (DECID  ph  ->  ( ( ph  <->  ps )  <-> if- (
ph ,  ps ,  -.  ps ) ) )

Proof of Theorem ifpdfbidc
StepHypRef Expression
1 con34bdc 876 . . 3  |-  (DECID  ph  ->  ( ( ps  ->  ph )  <->  ( -.  ph  ->  -.  ps ) ) )
21anbi2d 464 . 2  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  -.  ps ) ) ) )
3 dfbi2 388 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
43a1i 9 . 2  |-  (DECID  ph  ->  ( ( ph  <->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph ) ) ) )
5 dfifp2dc 987 . 2  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  -.  ps )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  -.  ps ) ) ) )
62, 4, 53bitr4d 220 1  |-  (DECID  ph  ->  ( ( ph  <->  ps )  <-> if- (
ph ,  ps ,  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator