ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan2 Unicode version

Theorem dcan2 936
Description: A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 935. This is deprecated; it's trivial to recreate with ex 115, but it's here in case someone is using this older form. (Contributed by Jim Kingdon, 12-Apr-2018.) (New usage is discouraged.)
Assertion
Ref Expression
dcan2  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  /\  ps )
) )

Proof of Theorem dcan2
StepHypRef Expression
1 dcan 935 . 2  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  /\  ps )
)
21ex 115 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  /\  ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  pcmptdvds  12486  1arith  12508  ctiunctlemudc  12597  nninfdclemp1  12610  lgsval  15161  lgscllem  15164  lgsneg  15181  lgsdir  15192  lgsdi  15194  lgsne0  15195  nninfsellemdc  15570
  Copyright terms: Public domain W3C validator