ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-9 Unicode version

Theorem ax-9 1554
Description: Derive ax-9 1554 from ax-i9 1553, the modified version for intuitionistic logic. Although ax-9 1554 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1553. (Contributed by NM, 3-Feb-2015.)
Assertion
Ref Expression
ax-9  |-  -.  A. x  -.  x  =  y

Proof of Theorem ax-9
StepHypRef Expression
1 ax-i9 1553 . . 3  |-  E. x  x  =  y
21notnoti 646 . 2  |-  -.  -.  E. x  x  =  y
3 alnex 1522 . 2  |-  ( A. x  -.  x  =  y  <->  -.  E. x  x  =  y )
42, 3mtbir 673 1  |-  -.  A. x  -.  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1371    = wceq 1373   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-ie2 1517  ax-i9 1553
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379
This theorem is referenced by:  equidqe  1555
  Copyright terms: Public domain W3C validator