ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-9 Unicode version

Theorem ax-9 1524
Description: Derive ax-9 1524 from ax-i9 1523, the modified version for intuitionistic logic. Although ax-9 1524 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1523. (Contributed by NM, 3-Feb-2015.)
Assertion
Ref Expression
ax-9  |-  -.  A. x  -.  x  =  y

Proof of Theorem ax-9
StepHypRef Expression
1 ax-i9 1523 . . 3  |-  E. x  x  =  y
21notnoti 640 . 2  |-  -.  -.  E. x  x  =  y
3 alnex 1492 . 2  |-  ( A. x  -.  x  =  y  <->  -.  E. x  x  =  y )
42, 3mtbir 666 1  |-  -.  A. x  -.  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1346    = wceq 1348   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-i9 1523
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  equidqe  1525
  Copyright terms: Public domain W3C validator