| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equidqe | Unicode version | ||
| Description: equid 1715 with some quantification and negation without using ax-4 1524 or ax-17 1540. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| equidqe | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-9 1545 | 
. 2
 | |
| 2 | ax-8 1518 | 
. . . . 5
 | |
| 3 | 2 | pm2.43i 49 | 
. . . 4
 | 
| 4 | 3 | con3i 633 | 
. . 3
 | 
| 5 | 4 | alimi 1469 | 
. 2
 | 
| 6 | 1, 5 | mto 663 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-i9 1544 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: ax4sp1 1547 | 
| Copyright terms: Public domain | W3C validator |