![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 |
![]() ![]() ![]() |
mtbir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtbir |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 |
. 2
![]() ![]() ![]() | |
2 | mtbir.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbi 670 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnexmid 850 nndc 851 fal 1360 ax-9 1531 nonconne 2359 nemtbir 2436 ru 2962 noel 3427 iun0 3944 0iun 3945 br0 4052 vprc 4136 iin0r 4170 nlim0 4395 snnex 4449 onsucelsucexmid 4530 0nelxp 4655 dm0 4842 iprc 4896 co02 5143 0fv 5551 frec0g 6398 nnsucuniel 6496 1nen2 6861 fidcenumlemrk 6953 djulclb 7054 ismkvnex 7153 pw1ne3 7229 sucpw1nel3 7232 3nsssucpw1 7235 0nnq 7363 0npr 7482 nqprdisj 7543 0ncn 7830 axpre-ltirr 7881 pnfnre 7999 mnfnre 8000 inelr 8541 xrltnr 9779 fzo0 10168 fzouzdisj 10180 inftonninf 10441 hashinfom 10758 3prm 12128 sqrt2irr 12162 ennnfonelem1 12408 bj-nndcALT 14513 bj-vprc 14651 pwle2 14751 exmidsbthrlem 14773 |
Copyright terms: Public domain | W3C validator |