| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 |
|
| mtbir.2 |
|
| Ref | Expression |
|---|---|
| mtbir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 |
. 2
| |
| 2 | mtbir.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | mtbi 674 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnexmid 855 nndc 856 fal 1402 ax-9 1577 nonconne 2412 nemtbir 2489 ru 3027 noel 3495 iun0 4022 0iun 4023 br0 4132 vprc 4216 iin0r 4253 nlim0 4485 snnex 4539 onsucelsucexmid 4622 0nelxp 4747 dm0 4937 iprc 4993 co02 5242 0fv 5665 frec0g 6543 nnsucuniel 6641 1nen2 7022 1ndom2 7026 fidcenumlemrk 7121 djulclb 7222 ismkvnex 7322 pw1ne3 7415 sucpw1nel3 7418 3nsssucpw1 7421 0nnq 7551 0npr 7670 nqprdisj 7731 0ncn 8018 axpre-ltirr 8069 pnfnre 8188 mnfnre 8189 inelr 8731 xrltnr 9975 fzo0 10366 fzouzdisj 10378 inftonninf 10664 hashinfom 11000 lsw0 11119 3prm 12650 sqrt2irr 12684 ennnfonelem1 12978 bj-nndcALT 16122 bj-vprc 16259 pwle2 16364 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |