| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 |
|
| mtbir.2 |
|
| Ref | Expression |
|---|---|
| mtbir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 |
. 2
| |
| 2 | mtbir.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | mtbi 672 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnexmid 852 nndc 853 fal 1380 ax-9 1555 nonconne 2390 nemtbir 2467 ru 3004 noel 3472 iun0 3998 0iun 3999 br0 4108 vprc 4192 iin0r 4229 nlim0 4459 snnex 4513 onsucelsucexmid 4596 0nelxp 4721 dm0 4911 iprc 4966 co02 5215 0fv 5635 frec0g 6506 nnsucuniel 6604 1nen2 6983 1ndom2 6987 fidcenumlemrk 7082 djulclb 7183 ismkvnex 7283 pw1ne3 7376 sucpw1nel3 7379 3nsssucpw1 7382 0nnq 7512 0npr 7631 nqprdisj 7692 0ncn 7979 axpre-ltirr 8030 pnfnre 8149 mnfnre 8150 inelr 8692 xrltnr 9936 fzo0 10327 fzouzdisj 10339 inftonninf 10624 hashinfom 10960 lsw0 11078 3prm 12565 sqrt2irr 12599 ennnfonelem1 12893 bj-nndcALT 15894 bj-vprc 16031 pwle2 16137 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |