| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 |
|
| mtbir.2 |
|
| Ref | Expression |
|---|---|
| mtbir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 |
. 2
| |
| 2 | mtbir.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | mtbi 672 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnexmid 852 nndc 853 fal 1380 ax-9 1554 nonconne 2388 nemtbir 2465 ru 2997 noel 3464 iun0 3984 0iun 3985 br0 4093 vprc 4177 iin0r 4214 nlim0 4442 snnex 4496 onsucelsucexmid 4579 0nelxp 4704 dm0 4893 iprc 4948 co02 5197 0fv 5614 frec0g 6485 nnsucuniel 6583 1nen2 6960 fidcenumlemrk 7058 djulclb 7159 ismkvnex 7259 pw1ne3 7344 sucpw1nel3 7347 3nsssucpw1 7350 0nnq 7479 0npr 7598 nqprdisj 7659 0ncn 7946 axpre-ltirr 7997 pnfnre 8116 mnfnre 8117 inelr 8659 xrltnr 9903 fzo0 10294 fzouzdisj 10306 inftonninf 10589 hashinfom 10925 lsw0 11043 3prm 12483 sqrt2irr 12517 ennnfonelem1 12811 bj-nndcALT 15731 bj-vprc 15869 pwle2 15972 exmidsbthrlem 15998 |
| Copyright terms: Public domain | W3C validator |