![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 |
![]() ![]() ![]() |
mtbir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtbir |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 |
. 2
![]() ![]() ![]() | |
2 | mtbir.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbi 670 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnexmid 850 nndc 851 fal 1360 ax-9 1531 nonconne 2359 nemtbir 2436 ru 2961 noel 3426 iun0 3943 0iun 3944 br0 4051 vprc 4135 iin0r 4169 nlim0 4394 snnex 4448 onsucelsucexmid 4529 0nelxp 4654 dm0 4841 iprc 4895 co02 5142 0fv 5550 frec0g 6397 nnsucuniel 6495 1nen2 6860 fidcenumlemrk 6952 djulclb 7053 ismkvnex 7152 pw1ne3 7228 sucpw1nel3 7231 3nsssucpw1 7234 0nnq 7362 0npr 7481 nqprdisj 7542 0ncn 7829 axpre-ltirr 7880 pnfnre 7998 mnfnre 7999 inelr 8540 xrltnr 9778 fzo0 10167 fzouzdisj 10179 inftonninf 10440 hashinfom 10757 3prm 12127 sqrt2irr 12161 ennnfonelem1 12407 bj-nndcALT 14480 bj-vprc 14618 pwle2 14718 exmidsbthrlem 14740 |
Copyright terms: Public domain | W3C validator |