![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 |
![]() ![]() ![]() |
mtbir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtbir |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 |
. 2
![]() ![]() ![]() | |
2 | mtbir.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbi 671 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnexmid 851 nndc 852 fal 1371 ax-9 1542 nonconne 2376 nemtbir 2453 ru 2985 noel 3451 iun0 3970 0iun 3971 br0 4078 vprc 4162 iin0r 4199 nlim0 4426 snnex 4480 onsucelsucexmid 4563 0nelxp 4688 dm0 4877 iprc 4931 co02 5180 0fv 5591 frec0g 6452 nnsucuniel 6550 1nen2 6919 fidcenumlemrk 7015 djulclb 7116 ismkvnex 7216 pw1ne3 7292 sucpw1nel3 7295 3nsssucpw1 7298 0nnq 7426 0npr 7545 nqprdisj 7606 0ncn 7893 axpre-ltirr 7944 pnfnre 8063 mnfnre 8064 inelr 8605 xrltnr 9848 fzo0 10238 fzouzdisj 10250 inftonninf 10516 hashinfom 10852 3prm 12269 sqrt2irr 12303 ennnfonelem1 12567 bj-nndcALT 15320 bj-vprc 15458 pwle2 15559 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |