| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| mtbir.1 | 
 | 
| mtbir.2 | 
 | 
| Ref | Expression | 
|---|---|
| mtbir | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mtbir.1 | 
. 2
 | |
| 2 | mtbir.2 | 
. . 3
 | |
| 3 | 2 | bicomi 132 | 
. 2
 | 
| 4 | 1, 3 | mtbi 671 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: nnexmid 851 nndc 852 fal 1371 ax-9 1545 nonconne 2379 nemtbir 2456 ru 2988 noel 3454 iun0 3973 0iun 3974 br0 4081 vprc 4165 iin0r 4202 nlim0 4429 snnex 4483 onsucelsucexmid 4566 0nelxp 4691 dm0 4880 iprc 4934 co02 5183 0fv 5594 frec0g 6455 nnsucuniel 6553 1nen2 6922 fidcenumlemrk 7020 djulclb 7121 ismkvnex 7221 pw1ne3 7297 sucpw1nel3 7300 3nsssucpw1 7303 0nnq 7431 0npr 7550 nqprdisj 7611 0ncn 7898 axpre-ltirr 7949 pnfnre 8068 mnfnre 8069 inelr 8611 xrltnr 9854 fzo0 10244 fzouzdisj 10256 inftonninf 10534 hashinfom 10870 3prm 12296 sqrt2irr 12330 ennnfonelem1 12624 bj-nndcALT 15404 bj-vprc 15542 pwle2 15643 exmidsbthrlem 15666 | 
| Copyright terms: Public domain | W3C validator |