| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 |
|
| mtbir.2 |
|
| Ref | Expression |
|---|---|
| mtbir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 |
. 2
| |
| 2 | mtbir.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | mtbi 672 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnexmid 852 nndc 853 fal 1380 ax-9 1554 nonconne 2388 nemtbir 2465 ru 2997 noel 3464 iun0 3984 0iun 3985 br0 4092 vprc 4176 iin0r 4213 nlim0 4441 snnex 4495 onsucelsucexmid 4578 0nelxp 4703 dm0 4892 iprc 4947 co02 5196 0fv 5612 frec0g 6483 nnsucuniel 6581 1nen2 6958 fidcenumlemrk 7056 djulclb 7157 ismkvnex 7257 pw1ne3 7342 sucpw1nel3 7345 3nsssucpw1 7348 0nnq 7477 0npr 7596 nqprdisj 7657 0ncn 7944 axpre-ltirr 7995 pnfnre 8114 mnfnre 8115 inelr 8657 xrltnr 9901 fzo0 10292 fzouzdisj 10304 inftonninf 10587 hashinfom 10923 lsw0 11041 3prm 12450 sqrt2irr 12484 ennnfonelem1 12778 bj-nndcALT 15694 bj-vprc 15832 pwle2 15935 exmidsbthrlem 15961 |
| Copyright terms: Public domain | W3C validator |