![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 |
![]() ![]() ![]() |
mtbir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtbir |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 |
. 2
![]() ![]() ![]() | |
2 | mtbir.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbi 671 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnexmid 851 nndc 852 fal 1371 ax-9 1542 nonconne 2376 nemtbir 2453 ru 2984 noel 3450 iun0 3969 0iun 3970 br0 4077 vprc 4161 iin0r 4198 nlim0 4425 snnex 4479 onsucelsucexmid 4562 0nelxp 4687 dm0 4876 iprc 4930 co02 5179 0fv 5590 frec0g 6450 nnsucuniel 6548 1nen2 6917 fidcenumlemrk 7013 djulclb 7114 ismkvnex 7214 pw1ne3 7290 sucpw1nel3 7293 3nsssucpw1 7296 0nnq 7424 0npr 7543 nqprdisj 7604 0ncn 7891 axpre-ltirr 7942 pnfnre 8061 mnfnre 8062 inelr 8603 xrltnr 9845 fzo0 10235 fzouzdisj 10247 inftonninf 10513 hashinfom 10849 3prm 12266 sqrt2irr 12300 ennnfonelem1 12564 bj-nndcALT 15250 bj-vprc 15388 pwle2 15489 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |