Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbir | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | |
mtbir.2 |
Ref | Expression |
---|---|
mtbir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 | |
2 | mtbir.2 | . . 3 | |
3 | 2 | bicomi 131 | . 2 |
4 | 1, 3 | mtbi 665 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnexmid 845 nndc 846 fal 1355 ax-9 1524 nonconne 2352 nemtbir 2429 ru 2954 noel 3418 iun0 3927 0iun 3928 br0 4035 vprc 4119 iin0r 4153 nlim0 4377 snnex 4431 onsucelsucexmid 4512 0nelxp 4637 dm0 4823 iprc 4877 co02 5122 0fv 5529 frec0g 6373 nnsucuniel 6471 1nen2 6835 fidcenumlemrk 6927 djulclb 7028 ismkvnex 7127 pw1ne3 7194 sucpw1nel3 7197 3nsssucpw1 7200 0nnq 7313 0npr 7432 nqprdisj 7493 0ncn 7780 axpre-ltirr 7831 pnfnre 7948 mnfnre 7949 inelr 8490 xrltnr 9723 fzo0 10111 fzouzdisj 10123 inftonninf 10384 hashinfom 10699 3prm 12069 sqrt2irr 12103 ennnfonelem1 12349 bj-nndcALT 13752 bj-vprc 13891 pwle2 13991 exmidsbthrlem 14014 |
Copyright terms: Public domain | W3C validator |