ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-9 GIF version

Theorem ax-9 1524
Description: Derive ax-9 1524 from ax-i9 1523, the modified version for intuitionistic logic. Although ax-9 1524 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1523. (Contributed by NM, 3-Feb-2015.)
Assertion
Ref Expression
ax-9 ¬ ∀𝑥 ¬ 𝑥 = 𝑦

Proof of Theorem ax-9
StepHypRef Expression
1 ax-i9 1523 . . 3 𝑥 𝑥 = 𝑦
21notnoti 640 . 2 ¬ ¬ ∃𝑥 𝑥 = 𝑦
3 alnex 1492 . 2 (∀𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∃𝑥 𝑥 = 𝑦)
42, 3mtbir 666 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1346   = wceq 1348  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-i9 1523
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  equidqe  1525
  Copyright terms: Public domain W3C validator