ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-9 GIF version

Theorem ax-9 1555
Description: Derive ax-9 1555 from ax-i9 1554, the modified version for intuitionistic logic. Although ax-9 1555 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1554. (Contributed by NM, 3-Feb-2015.)
Assertion
Ref Expression
ax-9 ¬ ∀𝑥 ¬ 𝑥 = 𝑦

Proof of Theorem ax-9
StepHypRef Expression
1 ax-i9 1554 . . 3 𝑥 𝑥 = 𝑦
21notnoti 646 . 2 ¬ ¬ ∃𝑥 𝑥 = 𝑦
3 alnex 1523 . 2 (∀𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∃𝑥 𝑥 = 𝑦)
42, 3mtbir 673 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1371   = wceq 1373  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie2 1518  ax-i9 1554
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379
This theorem is referenced by:  equidqe  1556
  Copyright terms: Public domain W3C validator