| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-9 | GIF version | ||
| Description: Derive ax-9 1545 from ax-i9 1544, the modified version for intuitionistic logic. Although ax-9 1545 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1544. (Contributed by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| ax-9 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i9 1544 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | 1 | notnoti 646 | . 2 ⊢ ¬ ¬ ∃𝑥 𝑥 = 𝑦 |
| 3 | alnex 1513 | . 2 ⊢ (∀𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∃𝑥 𝑥 = 𝑦) | |
| 4 | 2, 3 | mtbir 672 | 1 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1362 = wceq 1364 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: equidqe 1546 |
| Copyright terms: Public domain | W3C validator |