ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-9 GIF version

Theorem ax-9 1531
Description: Derive ax-9 1531 from ax-i9 1530, the modified version for intuitionistic logic. Although ax-9 1531 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1530. (Contributed by NM, 3-Feb-2015.)
Assertion
Ref Expression
ax-9 ¬ ∀𝑥 ¬ 𝑥 = 𝑦

Proof of Theorem ax-9
StepHypRef Expression
1 ax-i9 1530 . . 3 𝑥 𝑥 = 𝑦
21notnoti 645 . 2 ¬ ¬ ∃𝑥 𝑥 = 𝑦
3 alnex 1499 . 2 (∀𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∃𝑥 𝑥 = 𝑦)
42, 3mtbir 671 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1351   = wceq 1353  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ie2 1494  ax-i9 1530
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by:  equidqe  1532
  Copyright terms: Public domain W3C validator