ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11i Unicode version

Theorem ax11i 1737
Description: Inference that has ax-11 1529 (without  A. y) as its conclusion and does not require ax-10 1528, ax-11 1529, or ax12 1535 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.)
Hypotheses
Ref Expression
ax11i.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
ax11i.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
ax11i  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )

Proof of Theorem ax11i
StepHypRef Expression
1 ax11i.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 ax11i.2 . . 3  |-  ( ps 
->  A. x ps )
31biimprcd 160 . . 3  |-  ( ps 
->  ( x  =  y  ->  ph ) )
42, 3alrimih 1492 . 2  |-  ( ps 
->  A. x ( x  =  y  ->  ph )
)
51, 4biimtrdi 163 1  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator