![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax10o | Unicode version |
Description: Show that ax-10o 1727 can be derived from ax-10 1516. An open problem is
whether this theorem can be derived from ax-10 1516 and the others when
ax-11 1517 is replaced with ax-11o 1834. See Theorem ax10 1728
for the
rederivation of ax-10 1516 from ax10o 1726.
Normally, ax10o 1726 should be used rather than ax-10o 1727, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) |
Ref | Expression |
---|---|
ax10o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-10 1516 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-11 1517 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | equcoms 1719 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | sps 1548 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm2.27 40 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | al2imi 1469 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 4, 6 | sylsyld 58 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1458 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: hbae 1729 dral1 1741 |
Copyright terms: Public domain | W3C validator |