Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10o Unicode version

Theorem ax10o 1693
 Description: Show that ax-10o 1694 can be derived from ax-10 1483. An open problem is whether this theorem can be derived from ax-10 1483 and the others when ax-11 1484 is replaced with ax-11o 1795. See theorem ax10 1695 for the rederivation of ax-10 1483 from ax10o 1693. Normally, ax10o 1693 should be used rather than ax-10o 1694, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)
Assertion
Ref Expression
ax10o

Proof of Theorem ax10o
StepHypRef Expression
1 ax-10 1483 . 2
2 ax-11 1484 . . . 4
32equcoms 1684 . . 3
43sps 1517 . 2
5 pm2.27 40 . . 3
65al2imi 1434 . 2
71, 4, 6sylsyld 58 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1329 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-5 1423  ax-gen 1425  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510 This theorem depends on definitions:  df-bi 116 This theorem is referenced by:  hbae  1696  dral1  1708
 Copyright terms: Public domain W3C validator