ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax4sp1 Unicode version

Theorem ax4sp1 1526
Description: A special case of ax-4 1503 without using ax-4 1503 or ax-17 1519. (Contributed by NM, 13-Jan-2011.)
Assertion
Ref Expression
ax4sp1  |-  ( A. y  -.  x  =  x  ->  -.  x  =  x )

Proof of Theorem ax4sp1
StepHypRef Expression
1 equidqe 1525 . 2  |-  -.  A. y  -.  x  =  x
21pm2.21i 641 1  |-  ( A. y  -.  x  =  x  ->  -.  x  =  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-i9 1523
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator