ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax4sp1 Unicode version

Theorem ax4sp1 1543
Description: A special case of ax-4 1520 without using ax-4 1520 or ax-17 1536. (Contributed by NM, 13-Jan-2011.)
Assertion
Ref Expression
ax4sp1  |-  ( A. y  -.  x  =  x  ->  -.  x  =  x )

Proof of Theorem ax4sp1
StepHypRef Expression
1 equidqe 1542 . 2  |-  -.  A. y  -.  x  =  x
21pm2.21i 647 1  |-  ( A. y  -.  x  =  x  ->  -.  x  =  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie2 1504  ax-8 1514  ax-i9 1540
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator