Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax4sp1 | GIF version |
Description: A special case of ax-4 1503 without using ax-4 1503 or ax-17 1519. (Contributed by NM, 13-Jan-2011.) |
Ref | Expression |
---|---|
ax4sp1 | ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equidqe 1525 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | |
2 | 1 | pm2.21i 641 | 1 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie2 1487 ax-8 1497 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |