ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax4sp1 GIF version

Theorem ax4sp1 1526
Description: A special case of ax-4 1503 without using ax-4 1503 or ax-17 1519. (Contributed by NM, 13-Jan-2011.)
Assertion
Ref Expression
ax4sp1 (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥)

Proof of Theorem ax4sp1
StepHypRef Expression
1 equidqe 1525 . 2 ¬ ∀𝑦 ¬ 𝑥 = 𝑥
21pm2.21i 641 1 (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-i9 1523
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator