| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax4sp1 | GIF version | ||
| Description: A special case of ax-4 1524 without using ax-4 1524 or ax-17 1540. (Contributed by NM, 13-Jan-2011.) | 
| Ref | Expression | 
|---|---|
| ax4sp1 | ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equidqe 1546 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | |
| 2 | 1 | pm2.21i 647 | 1 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-i9 1544 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |