ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax4sp1 GIF version

Theorem ax4sp1 1521
Description: A special case of ax-4 1498 without using ax-4 1498 or ax-17 1514. (Contributed by NM, 13-Jan-2011.)
Assertion
Ref Expression
ax4sp1 (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥)

Proof of Theorem ax4sp1
StepHypRef Expression
1 equidqe 1520 . 2 ¬ ∀𝑦 ¬ 𝑥 = 𝑥
21pm2.21i 636 1 (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-i9 1518
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator