![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21i | Unicode version |
Description: A contradiction implies anything. Inference from pm2.21 617. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.21i.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.21i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21i.1 |
. 2
![]() ![]() ![]() | |
2 | pm2.21 617 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-in2 615 |
This theorem is referenced by: pm2.24ii 647 2false 701 pm3.2ni 813 falim 1367 pclem6 1374 nfnth 1465 alnex 1499 ax4sp1 1533 rex0 3442 0ss 3463 abf 3468 ral0 3526 int0 3860 nnsucelsuc 6494 nnmordi 6519 nnaordex 6531 0er 6571 fiintim 6930 elnnnn0b 9222 xltnegi 9837 xnn0xadd0 9869 frec2uzltd 10405 sum0 11398 fsum2dlemstep 11444 prod0 11595 fprod2dlemstep 11632 nn0enne 11909 exprmfct 12140 prm23lt5 12265 0met 13969 lgsdir2lem3 14516 2lgsoddprmlem3 14544 |
Copyright terms: Public domain | W3C validator |