Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnul | Unicode version |
Description: The empty class is bounded. See also bdcnulALT 13708. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdcnul | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3412 | . . 3 | |
2 | 1 | bdnth 13676 | . 2 BOUNDED |
3 | 2 | bdelir 13689 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wcel 2136 c0 3408 BOUNDED wbdc 13682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13655 ax-bdim 13656 ax-bdn 13659 ax-bdeq 13662 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-dif 3117 df-nul 3409 df-bdc 13683 |
This theorem is referenced by: bdeq0 13709 |
Copyright terms: Public domain | W3C validator |