Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnul Unicode version

Theorem bdcnul 13707
Description: The empty class is bounded. See also bdcnulALT 13708. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcnul  |- BOUNDED  (/)

Proof of Theorem bdcnul
StepHypRef Expression
1 noel 3412 . . 3  |-  -.  x  e.  (/)
21bdnth 13676 . 2  |- BOUNDED  x  e.  (/)
32bdelir 13689 1  |- BOUNDED  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   (/)c0 3408  BOUNDED wbdc 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13655  ax-bdim 13656  ax-bdn 13659  ax-bdeq 13662
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-dif 3117  df-nul 3409  df-bdc 13683
This theorem is referenced by:  bdeq0  13709
  Copyright terms: Public domain W3C validator