Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT Unicode version

Theorem bdnthALT 15733
Description: Alternate proof of bdnth 15732 not using bdfal 15731. Then, bdfal 15731 can be proved from this theorem, using fal 1379. The total number of proof steps would be 17 (for bdnthALT 15733) + 3 = 20, which is more than 8 (for bdfal 15731) + 9 (for bdnth 15732) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1  |-  -.  ph
Assertion
Ref Expression
bdnthALT  |- BOUNDED  ph

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 15730 . . 3  |- BOUNDED T.
21ax-bdn 15715 . 2  |- BOUNDED  -. T.
3 notnot 630 . . . 4  |-  ( T. 
->  -.  -. T.  )
43mptru 1381 . . 3  |-  -.  -. T.
5 bdnth.1 . . 3  |-  -.  ph
64, 52false 702 . 2  |-  ( -. T.  <->  ph )
72, 6bd0 15722 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1373  BOUNDED wbd 15710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-bd0 15711  ax-bdim 15712  ax-bdn 15715  ax-bdeq 15718
This theorem depends on definitions:  df-bi 117  df-tru 1375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator