Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT Unicode version

Theorem bdnthALT 16156
Description: Alternate proof of bdnth 16155 not using bdfal 16154. Then, bdfal 16154 can be proved from this theorem, using fal 1402. The total number of proof steps would be 17 (for bdnthALT 16156) + 3 = 20, which is more than 8 (for bdfal 16154) + 9 (for bdnth 16155) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1  |-  -.  ph
Assertion
Ref Expression
bdnthALT  |- BOUNDED  ph

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 16153 . . 3  |- BOUNDED T.
21ax-bdn 16138 . 2  |- BOUNDED  -. T.
3 notnot 632 . . . 4  |-  ( T. 
->  -.  -. T.  )
43mptru 1404 . . 3  |-  -.  -. T.
5 bdnth.1 . . 3  |-  -.  ph
64, 52false 706 . 2  |-  ( -. T.  <->  ph )
72, 6bd0 16145 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1396  BOUNDED wbd 16133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-bd0 16134  ax-bdim 16135  ax-bdn 16138  ax-bdeq 16141
This theorem depends on definitions:  df-bi 117  df-tru 1398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator