Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT Unicode version

Theorem bdnthALT 14557
Description: Alternate proof of bdnth 14556 not using bdfal 14555. Then, bdfal 14555 can be proved from this theorem, using fal 1360. The total number of proof steps would be 17 (for bdnthALT 14557) + 3 = 20, which is more than 8 (for bdfal 14555) + 9 (for bdnth 14556) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1  |-  -.  ph
Assertion
Ref Expression
bdnthALT  |- BOUNDED  ph

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 14554 . . 3  |- BOUNDED T.
21ax-bdn 14539 . 2  |- BOUNDED  -. T.
3 notnot 629 . . . 4  |-  ( T. 
->  -.  -. T.  )
43mptru 1362 . . 3  |-  -.  -. T.
5 bdnth.1 . . 3  |-  -.  ph
64, 52false 701 . 2  |-  ( -. T.  <->  ph )
72, 6bd0 14546 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1354  BOUNDED wbd 14534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-bd0 14535  ax-bdim 14536  ax-bdn 14539  ax-bdeq 14542
This theorem depends on definitions:  df-bi 117  df-tru 1356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator