Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT Unicode version

Theorem bdnthALT 13421
Description: Alternate proof of bdnth 13420 not using bdfal 13419. Then, bdfal 13419 can be proved from this theorem, using fal 1342. The total number of proof steps would be 17 (for bdnthALT 13421) + 3 = 20, which is more than 8 (for bdfal 13419) + 9 (for bdnth 13420) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1  |-  -.  ph
Assertion
Ref Expression
bdnthALT  |- BOUNDED  ph

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 13418 . . 3  |- BOUNDED T.
21ax-bdn 13403 . 2  |- BOUNDED  -. T.
3 notnot 619 . . . 4  |-  ( T. 
->  -.  -. T.  )
43mptru 1344 . . 3  |-  -.  -. T.
5 bdnth.1 . . 3  |-  -.  ph
64, 52false 691 . 2  |-  ( -. T.  <->  ph )
72, 6bd0 13410 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1336  BOUNDED wbd 13398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-bd0 13399  ax-bdim 13400  ax-bdn 13403  ax-bdeq 13406
This theorem depends on definitions:  df-bi 116  df-tru 1338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator