Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT Unicode version

Theorem bdnthALT 15481
Description: Alternate proof of bdnth 15480 not using bdfal 15479. Then, bdfal 15479 can be proved from this theorem, using fal 1371. The total number of proof steps would be 17 (for bdnthALT 15481) + 3 = 20, which is more than 8 (for bdfal 15479) + 9 (for bdnth 15480) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1  |-  -.  ph
Assertion
Ref Expression
bdnthALT  |- BOUNDED  ph

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 15478 . . 3  |- BOUNDED T.
21ax-bdn 15463 . 2  |- BOUNDED  -. T.
3 notnot 630 . . . 4  |-  ( T. 
->  -.  -. T.  )
43mptru 1373 . . 3  |-  -.  -. T.
5 bdnth.1 . . 3  |-  -.  ph
64, 52false 702 . 2  |-  ( -. T.  <->  ph )
72, 6bd0 15470 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1365  BOUNDED wbd 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-bd0 15459  ax-bdim 15460  ax-bdn 15463  ax-bdeq 15466
This theorem depends on definitions:  df-bi 117  df-tru 1367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator