Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT Unicode version

Theorem bdnthALT 14626
Description: Alternate proof of bdnth 14625 not using bdfal 14624. Then, bdfal 14624 can be proved from this theorem, using fal 1360. The total number of proof steps would be 17 (for bdnthALT 14626) + 3 = 20, which is more than 8 (for bdfal 14624) + 9 (for bdnth 14625) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1  |-  -.  ph
Assertion
Ref Expression
bdnthALT  |- BOUNDED  ph

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 14623 . . 3  |- BOUNDED T.
21ax-bdn 14608 . 2  |- BOUNDED  -. T.
3 notnot 629 . . . 4  |-  ( T. 
->  -.  -. T.  )
43mptru 1362 . . 3  |-  -.  -. T.
5 bdnth.1 . . 3  |-  -.  ph
64, 52false 701 . 2  |-  ( -. T.  <->  ph )
72, 6bd0 14615 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   T. wtru 1354  BOUNDED wbd 14603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-bd0 14604  ax-bdim 14605  ax-bdn 14608  ax-bdeq 14611
This theorem depends on definitions:  df-bi 117  df-tru 1356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator