Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0 Unicode version

Theorem bd0 15722
Description: A formula equivalent to a bounded one is bounded. See also bd0r 15723. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0.min  |- BOUNDED  ph
bd0.maj  |-  ( ph  <->  ps )
Assertion
Ref Expression
bd0  |- BOUNDED  ps

Proof of Theorem bd0
StepHypRef Expression
1 bd0.min . 2  |- BOUNDED  ph
2 bd0.maj . . 3  |-  ( ph  <->  ps )
32ax-bd0 15711 . 2  |-  (BOUNDED  ph  -> BOUNDED  ps )
41, 3ax-mp 5 1  |- BOUNDED  ps
Colors of variables: wff set class
Syntax hints:    <-> wb 105  BOUNDED wbd 15710
This theorem was proved from axioms:  ax-mp 5  ax-bd0 15711
This theorem is referenced by:  bd0r  15723  bdth  15729  bdnth  15732  bdnthALT  15733  bdph  15748  bdsbc  15756  bdsnss  15771  bdcint  15775  bdeqsuc  15779  bdcriota  15781  bj-axun2  15813
  Copyright terms: Public domain W3C validator