Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantr | Unicode version |
Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
biantr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | 1 | bibi2d 231 | . 2 |
3 | 2 | biimparc 297 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bm1.1 2155 bezoutlemmo 11961 |
Copyright terms: Public domain | W3C validator |