ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemmo Unicode version

Theorem bezoutlemmo 12327
Description: Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemmo.5  |-  ( ph  ->  E  e.  NN0 )
bezoutlemmo.6  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) )
Assertion
Ref Expression
bezoutlemmo  |-  ( ph  ->  D  =  E )
Distinct variable groups:    z, D    z, E    ph, z
Allowed substitution hints:    A( z)    B( z)

Proof of Theorem bezoutlemmo
StepHypRef Expression
1 bezoutlemgcd.3 . 2  |-  ( ph  ->  D  e.  NN0 )
2 bezoutlemmo.5 . 2  |-  ( ph  ->  E  e.  NN0 )
31nn0zd 9493 . . . 4  |-  ( ph  ->  D  e.  ZZ )
4 iddvds 12115 . . . 4  |-  ( D  e.  ZZ  ->  D  ||  D )
53, 4syl 14 . . 3  |-  ( ph  ->  D  ||  D )
6 breq1 4047 . . . . 5  |-  ( z  =  D  ->  (
z  ||  D  <->  D  ||  D
) )
7 breq1 4047 . . . . 5  |-  ( z  =  D  ->  (
z  ||  E  <->  D  ||  E
) )
86, 7bibi12d 235 . . . 4  |-  ( z  =  D  ->  (
( z  ||  D  <->  z 
||  E )  <->  ( D  ||  D  <->  D  ||  E ) ) )
9 bezoutlemgcd.4 . . . . . 6  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
10 bezoutlemmo.6 . . . . . 6  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) )
11 r19.26 2632 . . . . . 6  |-  ( A. z  e.  ZZ  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z  ||  E 
<->  ( z  ||  A  /\  z  ||  B ) ) )  <->  ( A. z  e.  ZZ  (
z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  (
z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
129, 10, 11sylanbrc 417 . . . . 5  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  D 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z 
||  E  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
13 biantr 955 . . . . . 6  |-  ( ( ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z  ||  E 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  (
z  ||  D  <->  z  ||  E ) )
1413ralimi 2569 . . . . 5  |-  ( A. z  e.  ZZ  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z  ||  E 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  A. z  e.  ZZ  ( z  ||  D 
<->  z  ||  E ) )
1512, 14syl 14 . . . 4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  z 
||  E ) )
168, 15, 3rspcdva 2882 . . 3  |-  ( ph  ->  ( D  ||  D  <->  D 
||  E ) )
175, 16mpbid 147 . 2  |-  ( ph  ->  D  ||  E )
182nn0zd 9493 . . . 4  |-  ( ph  ->  E  e.  ZZ )
19 iddvds 12115 . . . 4  |-  ( E  e.  ZZ  ->  E  ||  E )
2018, 19syl 14 . . 3  |-  ( ph  ->  E  ||  E )
21 breq1 4047 . . . . 5  |-  ( z  =  E  ->  (
z  ||  D  <->  E  ||  D
) )
22 breq1 4047 . . . . 5  |-  ( z  =  E  ->  (
z  ||  E  <->  E  ||  E
) )
2321, 22bibi12d 235 . . . 4  |-  ( z  =  E  ->  (
( z  ||  D  <->  z 
||  E )  <->  ( E  ||  D  <->  E  ||  E ) ) )
2423, 15, 18rspcdva 2882 . . 3  |-  ( ph  ->  ( E  ||  D  <->  E 
||  E ) )
2520, 24mpbird 167 . 2  |-  ( ph  ->  E  ||  D )
26 dvdseq 12159 . 2  |-  ( ( ( D  e.  NN0  /\  E  e.  NN0 )  /\  ( D  ||  E  /\  E  ||  D ) )  ->  D  =  E )
271, 2, 17, 25, 26syl22anc 1251 1  |-  ( ph  ->  D  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   class class class wbr 4044   NN0cn0 9295   ZZcz 9372    || cdvds 12098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099
This theorem is referenced by:  bezoutlemeu  12328
  Copyright terms: Public domain W3C validator