ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemmo Unicode version

Theorem bezoutlemmo 11939
Description: Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemmo.5  |-  ( ph  ->  E  e.  NN0 )
bezoutlemmo.6  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) )
Assertion
Ref Expression
bezoutlemmo  |-  ( ph  ->  D  =  E )
Distinct variable groups:    z, D    z, E    ph, z
Allowed substitution hints:    A( z)    B( z)

Proof of Theorem bezoutlemmo
StepHypRef Expression
1 bezoutlemgcd.3 . 2  |-  ( ph  ->  D  e.  NN0 )
2 bezoutlemmo.5 . 2  |-  ( ph  ->  E  e.  NN0 )
31nn0zd 9311 . . . 4  |-  ( ph  ->  D  e.  ZZ )
4 iddvds 11744 . . . 4  |-  ( D  e.  ZZ  ->  D  ||  D )
53, 4syl 14 . . 3  |-  ( ph  ->  D  ||  D )
6 breq1 3985 . . . . 5  |-  ( z  =  D  ->  (
z  ||  D  <->  D  ||  D
) )
7 breq1 3985 . . . . 5  |-  ( z  =  D  ->  (
z  ||  E  <->  D  ||  E
) )
86, 7bibi12d 234 . . . 4  |-  ( z  =  D  ->  (
( z  ||  D  <->  z 
||  E )  <->  ( D  ||  D  <->  D  ||  E ) ) )
9 bezoutlemgcd.4 . . . . . 6  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
10 bezoutlemmo.6 . . . . . 6  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) )
11 r19.26 2592 . . . . . 6  |-  ( A. z  e.  ZZ  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z  ||  E 
<->  ( z  ||  A  /\  z  ||  B ) ) )  <->  ( A. z  e.  ZZ  (
z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  (
z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
129, 10, 11sylanbrc 414 . . . . 5  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  D 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z 
||  E  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
13 biantr 942 . . . . . 6  |-  ( ( ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z  ||  E 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  (
z  ||  D  <->  z  ||  E ) )
1413ralimi 2529 . . . . 5  |-  ( A. z  e.  ZZ  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  /\  ( z  ||  E 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  A. z  e.  ZZ  ( z  ||  D 
<->  z  ||  E ) )
1512, 14syl 14 . . . 4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  z 
||  E ) )
168, 15, 3rspcdva 2835 . . 3  |-  ( ph  ->  ( D  ||  D  <->  D 
||  E ) )
175, 16mpbid 146 . 2  |-  ( ph  ->  D  ||  E )
182nn0zd 9311 . . . 4  |-  ( ph  ->  E  e.  ZZ )
19 iddvds 11744 . . . 4  |-  ( E  e.  ZZ  ->  E  ||  E )
2018, 19syl 14 . . 3  |-  ( ph  ->  E  ||  E )
21 breq1 3985 . . . . 5  |-  ( z  =  E  ->  (
z  ||  D  <->  E  ||  D
) )
22 breq1 3985 . . . . 5  |-  ( z  =  E  ->  (
z  ||  E  <->  E  ||  E
) )
2321, 22bibi12d 234 . . . 4  |-  ( z  =  E  ->  (
( z  ||  D  <->  z 
||  E )  <->  ( E  ||  D  <->  E  ||  E ) ) )
2423, 15, 18rspcdva 2835 . . 3  |-  ( ph  ->  ( E  ||  D  <->  E 
||  E ) )
2520, 24mpbird 166 . 2  |-  ( ph  ->  E  ||  D )
26 dvdseq 11786 . 2  |-  ( ( ( D  e.  NN0  /\  E  e.  NN0 )  /\  ( D  ||  E  /\  E  ||  D ) )  ->  D  =  E )
271, 2, 17, 25, 26syl22anc 1229 1  |-  ( ph  ->  D  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982   NN0cn0 9114   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728
This theorem is referenced by:  bezoutlemeu  11940
  Copyright terms: Public domain W3C validator