| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimparc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprcd 160 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 955 elrab3t 2935 difprsnss 3782 elpw2g 4216 elon2 4441 ideqg 4847 elrnmpt1s 4947 elrnmptg 4949 fun11iun 5565 eqfnfv2 5701 fmpt 5753 elunirn 5858 spc2ed 6342 tposfo2 6376 tposf12 6378 dom2lem 6886 enfii 6997 ac6sfi 7021 ltexprlemm 7748 elreal2 7978 fihasheqf1oi 10969 fprod2dlemstep 12048 bastop2 14671 2lgsoddprm 15705 |
| Copyright terms: Public domain | W3C validator |