ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc Unicode version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimparc  |-  ( ( ch  /\  ph )  ->  ps )

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimprcd 160 . 2  |-  ( ch 
->  ( ph  ->  ps ) )
32imp 124 1  |-  ( ( ch  /\  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  954  elrab3t  2927  difprsnss  3770  elpw2g  4199  elon2  4422  ideqg  4828  elrnmpt1s  4927  elrnmptg  4929  fun11iun  5542  eqfnfv2  5677  fmpt  5729  elunirn  5834  spc2ed  6318  tposfo2  6352  tposf12  6354  dom2lem  6862  enfii  6970  ac6sfi  6994  ltexprlemm  7712  elreal2  7942  fihasheqf1oi  10930  fprod2dlemstep  11904  bastop2  14527  2lgsoddprm  15561
  Copyright terms: Public domain W3C validator