ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc Unicode version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimparc  |-  ( ( ch  /\  ph )  ->  ps )

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimprcd 160 . 2  |-  ( ch 
->  ( ph  ->  ps ) )
32imp 124 1  |-  ( ( ch  /\  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  958  elrab3t  2958  difprsnss  3805  elpw2g  4239  elon2  4466  ideqg  4872  elrnmpt1s  4973  elrnmptg  4975  fun11iun  5592  eqfnfv2  5732  fmpt  5784  elunirn  5889  spc2ed  6377  tposfo2  6411  tposf12  6413  dom2lem  6921  enfii  7032  ac6sfi  7056  ltexprlemm  7783  elreal2  8013  fihasheqf1oi  11004  fprod2dlemstep  12128  bastop2  14752  2lgsoddprm  15786
  Copyright terms: Public domain W3C validator