ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc Unicode version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimparc  |-  ( ( ch  /\  ph )  ->  ps )

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimprcd 160 . 2  |-  ( ch 
->  ( ph  ->  ps ) )
32imp 124 1  |-  ( ( ch  /\  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  955  elrab3t  2928  difprsnss  3771  elpw2g  4200  elon2  4423  ideqg  4829  elrnmpt1s  4928  elrnmptg  4930  fun11iun  5543  eqfnfv2  5678  fmpt  5730  elunirn  5835  spc2ed  6319  tposfo2  6353  tposf12  6355  dom2lem  6863  enfii  6971  ac6sfi  6995  ltexprlemm  7713  elreal2  7943  fihasheqf1oi  10932  fprod2dlemstep  11933  bastop2  14556  2lgsoddprm  15590
  Copyright terms: Public domain W3C validator