ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc Unicode version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimparc  |-  ( ( ch  /\  ph )  ->  ps )

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimprcd 160 . 2  |-  ( ch 
->  ( ph  ->  ps ) )
32imp 124 1  |-  ( ( ch  /\  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  955  elrab3t  2935  difprsnss  3782  elpw2g  4216  elon2  4441  ideqg  4847  elrnmpt1s  4947  elrnmptg  4949  fun11iun  5565  eqfnfv2  5701  fmpt  5753  elunirn  5858  spc2ed  6342  tposfo2  6376  tposf12  6378  dom2lem  6886  enfii  6997  ac6sfi  7021  ltexprlemm  7748  elreal2  7978  fihasheqf1oi  10969  fprod2dlemstep  12048  bastop2  14671  2lgsoddprm  15705
  Copyright terms: Public domain W3C validator