| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimparc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprcd 160 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 958 elrab3t 2958 difprsnss 3805 elpw2g 4239 elon2 4466 ideqg 4872 elrnmpt1s 4973 elrnmptg 4975 fun11iun 5592 eqfnfv2 5732 fmpt 5784 elunirn 5889 spc2ed 6377 tposfo2 6411 tposf12 6413 dom2lem 6921 enfii 7032 ac6sfi 7056 ltexprlemm 7783 elreal2 8013 fihasheqf1oi 11004 fprod2dlemstep 12128 bastop2 14752 2lgsoddprm 15786 |
| Copyright terms: Public domain | W3C validator |