![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimparc | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimparc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprcd 160 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantr 954 elrab3t 2907 difprsnss 3745 elpw2g 4171 elon2 4391 ideqg 4793 elrnmpt1s 4892 elrnmptg 4894 fun11iun 5497 eqfnfv2 5630 fmpt 5682 elunirn 5783 spc2ed 6252 tposfo2 6286 tposf12 6288 dom2lem 6790 enfii 6892 ac6sfi 6916 ltexprlemm 7617 elreal2 7847 fihasheqf1oi 10785 fprod2dlemstep 11648 bastop2 13981 |
Copyright terms: Public domain | W3C validator |