ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc Unicode version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimparc  |-  ( ( ch  /\  ph )  ->  ps )

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimprcd 160 . 2  |-  ( ch 
->  ( ph  ->  ps ) )
32imp 124 1  |-  ( ( ch  /\  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  954  elrab3t  2907  difprsnss  3745  elpw2g  4171  elon2  4391  ideqg  4793  elrnmpt1s  4892  elrnmptg  4894  fun11iun  5497  eqfnfv2  5630  fmpt  5682  elunirn  5783  spc2ed  6252  tposfo2  6286  tposf12  6288  dom2lem  6790  enfii  6892  ac6sfi  6916  ltexprlemm  7617  elreal2  7847  fihasheqf1oi  10785  fprod2dlemstep  11648  bastop2  13981
  Copyright terms: Public domain W3C validator