| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimparc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprcd 160 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 954 elrab3t 2927 difprsnss 3770 elpw2g 4199 elon2 4422 ideqg 4828 elrnmpt1s 4927 elrnmptg 4929 fun11iun 5542 eqfnfv2 5677 fmpt 5729 elunirn 5834 spc2ed 6318 tposfo2 6352 tposf12 6354 dom2lem 6862 enfii 6970 ac6sfi 6994 ltexprlemm 7712 elreal2 7942 fihasheqf1oi 10930 fprod2dlemstep 11904 bastop2 14527 2lgsoddprm 15561 |
| Copyright terms: Public domain | W3C validator |