| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimparc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprcd 160 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 955 elrab3t 2928 difprsnss 3771 elpw2g 4200 elon2 4423 ideqg 4829 elrnmpt1s 4928 elrnmptg 4930 fun11iun 5543 eqfnfv2 5678 fmpt 5730 elunirn 5835 spc2ed 6319 tposfo2 6353 tposf12 6355 dom2lem 6863 enfii 6971 ac6sfi 6995 ltexprlemm 7713 elreal2 7943 fihasheqf1oi 10932 fprod2dlemstep 11933 bastop2 14556 2lgsoddprm 15590 |
| Copyright terms: Public domain | W3C validator |