ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d Unicode version

Theorem bibi1d 231
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
bibi1d  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21bibi2d 230 . 2  |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
3 bicom 138 . 2  |-  ( ( ps  <->  th )  <->  ( th  <->  ps ) )
4 bicom 138 . 2  |-  ( ( ch  <->  th )  <->  ( th  <->  ch ) )
52, 3, 43bitr4g 221 1  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  bibi12d  233  bibi1  238  biassdc  1331  eubidh  1954  eubid  1955  axext3  2071  bm1.1  2073  eqeq1  2094  pm13.183  2754  elabgt  2757  elrab3t  2770  mob  2797  sbctt  2905  sbcabel  2920  isoeq2  5581  caovcang  5806  frecabcl  6164  expap0  9981  bezoutlemeu  11270  dfgcd3  11273  bezout  11274  prmdvdsexp  11401  bdsepnft  11733  bdsepnfALT  11735  strcollnft  11834  strcollnfALT  11836
  Copyright terms: Public domain W3C validator