ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d Unicode version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
bibi1d  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21bibi2d 232 . 2  |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
3 bicom 140 . 2  |-  ( ( ps  <->  th )  <->  ( th  <->  ps ) )
4 bicom 140 . 2  |-  ( ( ch  <->  th )  <->  ( th  <->  ch ) )
52, 3, 43bitr4g 223 1  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1437  eubidh  2083  eubid  2084  axext3  2212  bm1.1  2214  eqeq1  2236  pm13.183  2941  elabgt  2944  elrab3t  2958  mob  2985  sbctt  3095  sbcabel  3111  isoeq2  5925  caovcang  6166  uchoice  6281  frecabcl  6543  expap0  10786  bezoutlemeu  12523  dfgcd3  12526  bezout  12527  prmdvdsexp  12665  ismet  15012  isxmet  15013  bdsepnft  16208  bdsepnfALT  16210
  Copyright terms: Public domain W3C validator