ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d Unicode version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
bibi1d  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21bibi2d 232 . 2  |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
3 bicom 140 . 2  |-  ( ( ps  <->  th )  <->  ( th  <->  ps ) )
4 bicom 140 . 2  |-  ( ( ch  <->  th )  <->  ( th  <->  ch ) )
52, 3, 43bitr4g 223 1  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1415  eubidh  2060  eubid  2061  axext3  2188  bm1.1  2190  eqeq1  2212  pm13.183  2911  elabgt  2914  elrab3t  2928  mob  2955  sbctt  3065  sbcabel  3080  isoeq2  5871  caovcang  6108  uchoice  6223  frecabcl  6485  expap0  10714  bezoutlemeu  12328  dfgcd3  12331  bezout  12332  prmdvdsexp  12470  ismet  14816  isxmet  14817  bdsepnft  15823  bdsepnfALT  15825
  Copyright terms: Public domain W3C validator