ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d Unicode version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
bibi1d  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21bibi2d 232 . 2  |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
3 bicom 140 . 2  |-  ( ( ps  <->  th )  <->  ( th  <->  ps ) )
4 bicom 140 . 2  |-  ( ( ch  <->  th )  <->  ( th  <->  ch ) )
52, 3, 43bitr4g 223 1  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1406  eubidh  2048  eubid  2049  axext3  2176  bm1.1  2178  eqeq1  2200  pm13.183  2898  elabgt  2901  elrab3t  2915  mob  2942  sbctt  3052  sbcabel  3067  isoeq2  5845  caovcang  6080  uchoice  6190  frecabcl  6452  expap0  10640  bezoutlemeu  12144  dfgcd3  12147  bezout  12148  prmdvdsexp  12286  ismet  14512  isxmet  14513  bdsepnft  15379  bdsepnfALT  15381
  Copyright terms: Public domain W3C validator