Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi1d | Unicode version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbid.1 |
Ref | Expression |
---|---|
bibi1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 | |
2 | 1 | bibi2d 231 | . 2 |
3 | bicom 139 | . 2 | |
4 | bicom 139 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi12d 234 bibi1 239 biassdc 1385 eubidh 2020 eubid 2021 axext3 2148 bm1.1 2150 eqeq1 2172 pm13.183 2864 elabgt 2867 elrab3t 2881 mob 2908 sbctt 3017 sbcabel 3032 isoeq2 5770 caovcang 6003 frecabcl 6367 expap0 10485 bezoutlemeu 11940 dfgcd3 11943 bezout 11944 prmdvdsexp 12080 ismet 12984 isxmet 12985 bdsepnft 13769 bdsepnfALT 13771 |
Copyright terms: Public domain | W3C validator |