ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d Unicode version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
bibi1d  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21bibi2d 232 . 2  |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
3 bicom 140 . 2  |-  ( ( ps  <->  th )  <->  ( th  <->  ps ) )
4 bicom 140 . 2  |-  ( ( ch  <->  th )  <->  ( th  <->  ch ) )
52, 3, 43bitr4g 223 1  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1406  eubidh  2048  eubid  2049  axext3  2176  bm1.1  2178  eqeq1  2200  pm13.183  2899  elabgt  2902  elrab3t  2916  mob  2943  sbctt  3053  sbcabel  3068  isoeq2  5846  caovcang  6082  uchoice  6192  frecabcl  6454  expap0  10643  bezoutlemeu  12147  dfgcd3  12150  bezout  12151  prmdvdsexp  12289  ismet  14523  isxmet  14524  bdsepnft  15449  bdsepnfALT  15451
  Copyright terms: Public domain W3C validator