ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d Unicode version

Theorem bibi1d 232
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
bibi1d  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21bibi2d 231 . 2  |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
3 bicom 139 . 2  |-  ( ( ps  <->  th )  <->  ( th  <->  ps ) )
4 bicom 139 . 2  |-  ( ( ch  <->  th )  <->  ( th  <->  ch ) )
52, 3, 43bitr4g 222 1  |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bibi12d  234  bibi1  239  biassdc  1385  eubidh  2020  eubid  2021  axext3  2148  bm1.1  2150  eqeq1  2172  pm13.183  2864  elabgt  2867  elrab3t  2881  mob  2908  sbctt  3017  sbcabel  3032  isoeq2  5770  caovcang  6003  frecabcl  6367  expap0  10485  bezoutlemeu  11940  dfgcd3  11943  bezout  11944  prmdvdsexp  12080  ismet  12984  isxmet  12985  bdsepnft  13769  bdsepnfALT  13771
  Copyright terms: Public domain W3C validator