Proof of Theorem biassdc
Step | Hyp | Ref
| Expression |
1 | | df-dc 830 |
. . 3
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
2 | | pm5.501 243 |
. . . . . . 7
⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) |
3 | 2 | bibi1d 232 |
. . . . . 6
⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
4 | | pm5.501 243 |
. . . . . 6
⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
5 | 3, 4 | bitr3d 189 |
. . . . 5
⊢ (𝜑 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
6 | 5 | a1d 22 |
. . . 4
⊢ (𝜑 → ((DECID
𝜓 ∧ DECID
𝜒) → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))))) |
7 | | nbbndc 1389 |
. . . . . . . . 9
⊢
(DECID 𝜓 → (DECID 𝜒 → ((¬ 𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)))) |
8 | 7 | imp 123 |
. . . . . . . 8
⊢
((DECID 𝜓 ∧ DECID 𝜒) → ((¬ 𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒))) |
9 | 8 | adantl 275 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ (DECID
𝜓 ∧ DECID
𝜒)) → ((¬ 𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒))) |
10 | | nbn2 692 |
. . . . . . . . 9
⊢ (¬
𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) |
11 | 10 | bibi1d 232 |
. . . . . . . 8
⊢ (¬
𝜑 → ((¬ 𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
12 | 11 | adantr 274 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ (DECID
𝜓 ∧ DECID
𝜒)) → ((¬ 𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
13 | 9, 12 | bitr3d 189 |
. . . . . 6
⊢ ((¬
𝜑 ∧ (DECID
𝜓 ∧ DECID
𝜒)) → (¬ (𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
14 | | nbn2 692 |
. . . . . . 7
⊢ (¬
𝜑 → (¬ (𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
15 | 14 | adantr 274 |
. . . . . 6
⊢ ((¬
𝜑 ∧ (DECID
𝜓 ∧ DECID
𝜒)) → (¬ (𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
16 | 13, 15 | bitr3d 189 |
. . . . 5
⊢ ((¬
𝜑 ∧ (DECID
𝜓 ∧ DECID
𝜒)) → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
17 | 16 | ex 114 |
. . . 4
⊢ (¬
𝜑 →
((DECID 𝜓
∧ DECID 𝜒)
→ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))))) |
18 | 6, 17 | jaoi 711 |
. . 3
⊢ ((𝜑 ∨ ¬ 𝜑) → ((DECID 𝜓 ∧ DECID 𝜒) → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))))) |
19 | 1, 18 | sylbi 120 |
. 2
⊢
(DECID 𝜑 → ((DECID 𝜓 ∧ DECID 𝜒) → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))))) |
20 | 19 | expd 256 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (DECID
𝜒 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))))) |