ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biassdc GIF version

Theorem biassdc 1437
Description: Associative law for the biconditional, for decidable propositions.

The classical version (without the decidability conditions) is an axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805, and, interestingly, was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by Jim Kingdon, 4-May-2018.)

Assertion
Ref Expression
biassdc (DECID 𝜑 → (DECID 𝜓 → (DECID 𝜒 → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒))))))

Proof of Theorem biassdc
StepHypRef Expression
1 df-dc 840 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 pm5.501 244 . . . . . . 7 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
32bibi1d 233 . . . . . 6 (𝜑 → ((𝜓𝜒) ↔ ((𝜑𝜓) ↔ 𝜒)))
4 pm5.501 244 . . . . . 6 (𝜑 → ((𝜓𝜒) ↔ (𝜑 ↔ (𝜓𝜒))))
53, 4bitr3d 190 . . . . 5 (𝜑 → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒))))
65a1d 22 . . . 4 (𝜑 → ((DECID 𝜓DECID 𝜒) → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))))
7 nbbndc 1436 . . . . . . . . 9 (DECID 𝜓 → (DECID 𝜒 → ((¬ 𝜓𝜒) ↔ ¬ (𝜓𝜒))))
87imp 124 . . . . . . . 8 ((DECID 𝜓DECID 𝜒) → ((¬ 𝜓𝜒) ↔ ¬ (𝜓𝜒)))
98adantl 277 . . . . . . 7 ((¬ 𝜑 ∧ (DECID 𝜓DECID 𝜒)) → ((¬ 𝜓𝜒) ↔ ¬ (𝜓𝜒)))
10 nbn2 702 . . . . . . . . 9 𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
1110bibi1d 233 . . . . . . . 8 𝜑 → ((¬ 𝜓𝜒) ↔ ((𝜑𝜓) ↔ 𝜒)))
1211adantr 276 . . . . . . 7 ((¬ 𝜑 ∧ (DECID 𝜓DECID 𝜒)) → ((¬ 𝜓𝜒) ↔ ((𝜑𝜓) ↔ 𝜒)))
139, 12bitr3d 190 . . . . . 6 ((¬ 𝜑 ∧ (DECID 𝜓DECID 𝜒)) → (¬ (𝜓𝜒) ↔ ((𝜑𝜓) ↔ 𝜒)))
14 nbn2 702 . . . . . . 7 𝜑 → (¬ (𝜓𝜒) ↔ (𝜑 ↔ (𝜓𝜒))))
1514adantr 276 . . . . . 6 ((¬ 𝜑 ∧ (DECID 𝜓DECID 𝜒)) → (¬ (𝜓𝜒) ↔ (𝜑 ↔ (𝜓𝜒))))
1613, 15bitr3d 190 . . . . 5 ((¬ 𝜑 ∧ (DECID 𝜓DECID 𝜒)) → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒))))
1716ex 115 . . . 4 𝜑 → ((DECID 𝜓DECID 𝜒) → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))))
186, 17jaoi 721 . . 3 ((𝜑 ∨ ¬ 𝜑) → ((DECID 𝜓DECID 𝜒) → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))))
191, 18sylbi 121 . 2 (DECID 𝜑 → ((DECID 𝜓DECID 𝜒) → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))))
2019expd 258 1 (DECID 𝜑 → (DECID 𝜓 → (DECID 𝜒 → (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒))))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840
This theorem is referenced by:  bilukdc  1438
  Copyright terms: Public domain W3C validator