Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbimedh Unicode version

Theorem bj-sbimedh 12978
 Description: A strengthening of sbiedh 1760 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbimedh.1
bj-sbimedh.2
bj-sbimedh.3
Assertion
Ref Expression
bj-sbimedh

Proof of Theorem bj-sbimedh
StepHypRef Expression
1 sb1 1739 . . 3
2 bj-sbimedh.1 . . . 4
3 bj-sbimedh.3 . . . . 5
43impd 252 . . . 4
52, 4eximdh 1590 . . 3
61, 5syl5 32 . 2
7 bj-sbimedh.2 . . 3
82, 719.9hd 1640 . 2
96, 8syld 45 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103  wal 1329  wex 1468  wsb 1735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-ial 1514 This theorem depends on definitions:  df-bi 116  df-sb 1736 This theorem is referenced by:  bj-sbimeh  12979
 Copyright terms: Public domain W3C validator