Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbimedh Unicode version

Theorem bj-sbimedh 13652
Description: A strengthening of sbiedh 1775 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbimedh.1  |-  ( ph  ->  A. x ph )
bj-sbimedh.2  |-  ( ph  ->  ( ch  ->  A. x ch ) )
bj-sbimedh.3  |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
bj-sbimedh  |-  ( ph  ->  ( [ y  /  x ] ps  ->  ch ) )

Proof of Theorem bj-sbimedh
StepHypRef Expression
1 sb1 1754 . . 3  |-  ( [ y  /  x ] ps  ->  E. x ( x  =  y  /\  ps ) )
2 bj-sbimedh.1 . . . 4  |-  ( ph  ->  A. x ph )
3 bj-sbimedh.3 . . . . 5  |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch ) ) )
43impd 252 . . . 4  |-  ( ph  ->  ( ( x  =  y  /\  ps )  ->  ch ) )
52, 4eximdh 1599 . . 3  |-  ( ph  ->  ( E. x ( x  =  y  /\  ps )  ->  E. x ch ) )
61, 5syl5 32 . 2  |-  ( ph  ->  ( [ y  /  x ] ps  ->  E. x ch ) )
7 bj-sbimedh.2 . . 3  |-  ( ph  ->  ( ch  ->  A. x ch ) )
82, 719.9hd 1650 . 2  |-  ( ph  ->  ( E. x ch 
->  ch ) )
96, 8syld 45 1  |-  ( ph  ->  ( [ y  /  x ] ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  bj-sbimeh  13653
  Copyright terms: Public domain W3C validator