Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbimeh Unicode version

Theorem bj-sbimeh 13653
Description: A strengthening of sbieh 1778 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbimeh.1  |-  ( ps 
->  A. x ps )
bj-sbimeh.2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-sbimeh  |-  ( [ y  /  x ] ph  ->  ps )

Proof of Theorem bj-sbimeh
StepHypRef Expression
1 tru 1347 . . . 4  |- T.
21hbth 1451 . . 3  |-  ( T. 
->  A. x T.  )
3 bj-sbimeh.1 . . . 4  |-  ( ps 
->  A. x ps )
43a1i 9 . . 3  |-  ( T. 
->  ( ps  ->  A. x ps ) )
5 bj-sbimeh.2 . . . 4  |-  ( x  =  y  ->  ( ph  ->  ps ) )
65a1i 9 . . 3  |-  ( T. 
->  ( x  =  y  ->  ( ph  ->  ps ) ) )
72, 4, 6bj-sbimedh 13652 . 2  |-  ( T. 
->  ( [ y  /  x ] ph  ->  ps ) )
87mptru 1352 1  |-  ( [ y  /  x ] ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   T. wtru 1344   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-sb 1751
This theorem is referenced by:  bj-sbime  13654
  Copyright terms: Public domain W3C validator