ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv3v Unicode version

Theorem cbv3v 1766
Description: Rule used to change bound variables, using implicit substitution. Version of cbv3 1764 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbv3v.nf1  |-  F/ y
ph
cbv3v.nf2  |-  F/ x ps
cbv3v.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
cbv3v  |-  ( A. x ph  ->  A. y ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbv3v
StepHypRef Expression
1 cbv3v.nf1 . 2  |-  F/ y
ph
2 cbv3v.nf2 . 2  |-  F/ x ps
3 cbv3v.1 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
41, 2, 3cbv3 1764 1  |-  ( A. x ph  ->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1370   F/wnf 1482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483
This theorem is referenced by:  cbv1v  1769  cbvalv1  1773
  Copyright terms: Public domain W3C validator